Abstract
Visualisations offer a variety of novel ways to depict data to a wider range of users. Moreover, they provide the ability to transform raw data into intuitive visual mechanisms for communication. Despite the developments in visualisation techniques, an area of depiction that has struggled to advance is uncertainty. The visualisation of uncertainty offers an additional dimension for the data by presenting confidence and error rates. Whilst nearly all predictive data sets visualised contain uncertainties, there is still little impulse to actively represent uncertainty. A growing area of interest in the visualisation world is the field of aesthetics; the authors ask the question ‘could aesthetics be applied to address the issues surrounding visualising uncertainty’. This paper reports on the design and delivery of a study to evaluate the effectiveness of aesthetics for the depiction of uncertainty. In particular, the evaluation of how to practically determine how we assess the influence of aesthetic dimensions for the presentation of uncertainty. The paper reports on the strategies employed in this study to assess user’s decision around aesthetic designs, whilst determining what aesthetic combinations elicit the most uncertain visual representation. The findings show that certain aesthetic combinations in a line graph visualisation portrayed a higher level of uncertainty than others and that particular combinations triggered affective responses based on how the visualisation influenced/impacted a participant. In detail, how the textured line characteristics can be displayed aesthetically (combined with either emphasis or scale) to encourage optimal user experiences of uncertainty in a diverse participant group. The paper highlights how a user’s decision on which texture was most uncertain can be overturned when presented with varying levels of emphasis and scale. In summary, this paper contributes to a more in-depth understanding of how to design for and evaluate aesthetic uncertainty visualisations that encourage interaction with the data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertin, J.: Semiology of Graphics, 1st edn. Esri Press, New York (2011)
Boukhelifa, N., Duke, D.J.: Uncertainty visualization - why might it fail? In: Conference on Human Factors in Computing Systems - Proceedings (April), pp. 4051–4056 (2009). https://doi.org/10.1145/1520340.1520616
Carroll, F.: Designing (for) experiences in photorealistic VR environments. New Rev. Hypermedia Multimedia 16(1–2), 181–194 (2010). https://doi.org/10.1080/13614561003710250
Cawthon, N., Moere, A.V.: The effect of aesthetic on the usability of data visualization. In: Proceedings of the International Conference on Information Visualisation, pp. 637–645 (2007). https://doi.org/10.1109/IV.2007.147
Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl. 25(4), 12–16 (2005). https://doi.org/10.1109/MCG.2005.91
Chuliá, H., Guillén, M., Uribe, J.M.: Measuring uncertainty in the stock market. Int. Rev. Econ. Finan. 48, 18–33 (2017). https://doi.org/10.1016/j.iref.2016.11.003
Comes, T., Adrot, A., Rizza, C.: Decision-making under uncertainty (2017). https://www.researchgate.net/publication/324792356
Dane, E., Pratt, M.G.: Exploring intuition and its role in managerial decision making. Acad. Manage. Rev. 32(1), 33–54 (2007). https://doi.org/10.5465/AMR.2007.23463682
Deitrick, S., Edsall, R.: The influence of uncertainty visualization on decision making: an empirical evaluation. In: Riedle, A., Kainz, W., Elmes, G. (eds.) Progress in Spatial Data Handling, pp. 719–738. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-35589-8_45
Deng, L., Wang, G.: Quantitative evaluation of visual aesthetics of human-machine interaction interface layout. Comput. Intell. Neurosci. 2020, 9815937 (2020). https://doi.org/10.1155/2020/9815937
Gandhi, P., Pruthi, J.: Data Visualization. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2282-64
Gatto, M.A.C.: Making Research Useful: Current Challenges, vol. 54, May 2015
Greb, F., Elvers, P., Fischinger, T.: Trends in empirical aesthetics: a review of the journal empirical studies of the arts from 1983 to 2014. Empirical Stud. Arts 35(1), 3–26 (2017). https://doi.org/10.1177/0276237415625258
Hallo, L., Nguyen, T.: Administrative sciences holistic view of intuition and analysis in leadership. Adm. Sci. 12(4), 25 (2022)
Hohl, M.: From abstract to actual: art and designer-like enquiries into data visualisation. Kybernetes 40(7/8), 1038–1044 (2011). https://doi.org/10.1108/03684921111160278
Hullman, J.: Why authors don’t visualize uncertainty. IEEE Trans. Visual. Comput. Graph. 26, 130–139 (2020). https://doi.org/10.1109/TVCG.2019.2934287
Jedynak, P., Ba̧k, S.: Understanding uncertainty and risk in management. J. Intercultural Manage. 12(1), 12–35 (2020). https://doi.org/10.2478/joim-2020-0030
Joslyn, S., Savelli, S.: Communicating forecast uncertainty: public perception of weather forecast uncertainty. Meteorol. Appl. 17(2), 180–195 (2010). https://doi.org/10.1002/met.190
Joslyn, S., Savelli, S.: Visualizing uncertainty for non-expert end users: the challenge of the deterministic construal error. Front. Comput. Sci. 2, 1–12 (2021). https://doi.org/10.3389/fcomp.2020.590232
Kemal, M.: Data Visualization: Methods, Types, Benefits, and Checklist, March 2019. https://doi.org/10.13140/RG.2.2.19618.48324
Kim, C., Self, J.A., Bae, J.: Exploring the first momentary unboxing experience. Des. J. 21(1), 1–22 (2018). https://doi.org/10.1080/14606925.2018.1444538
Kleineberg, J., Levontin, P., Walton, J.L.: Analysis under uncertainty for decision makers network, pp. 1–29 (2019)
Koningsbruggen, R.V., Hornecker, E.: “It s just a graph” the effect of post-hoc rationalisation on InfoVis evaluation (2021). https://doi.org/10.1145/3450741.3465257
Korporaal, M., Ruginski, I.T., Fabrikant, S.I.: Effects of uncertainty visualization on map-based decision making under time pressure. Front. Comput. Sci. 2(August), 1–20 (2020). https://doi.org/10.3389/fcomp.2020.00032
Kozioł-Nadolna, K., Beyer, K.: Determinants of the decision-making process in organizations. Procedia Comput. Sci. 192, 2375–2384 (2021). https://doi.org/10.1016/j.procs.2021.09.006
Krickx, G.A.: The relationship between uncertainty and vertical integration. Int. J. Organ. Anal. 8(3), 309–329 (2000). https://doi.org/10.1108/eb028921
Lang, A.: Aesthetics in information visualization. In: Proceedings of the Working Conference on Advanced Visual Interfaces - AVI 2008, p. 384 (2008)
Leder, H., Pelowski, M.: Empirical aesthetics (2021). https://doi.org/10.1093/oxfordhb/9780198824350.013.43
Lee, B., Choe, E.K., Isenberg, P., Marriott, K., Stasko, J.: Reaching broader audiences with data visualization. IEEE Comput. Graph. Appl. 40(2), 82–90 (2020). https://doi.org/10.1109/MCG.2020.2968244
Lenz, E., Hassenzahl, M., Diefenbach, S.: Aesthetic interaction as fit between interaction attributes and experiential qualities. New Ideas Psychol. 47, 80–90 (2017). https://doi.org/10.1016/j.newideapsych.2017.03.010
Levontin, P., Lindsay Walton, J.: Visualising uncertainty a short introduction, vol. 1 (2020)
Li, Q.: Overview of data visualization. In: Embodying Data, pp. 17–47. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5069-0_2
Longstreet, P., Valacich, J., Wells, J.: Towards an understanding of online visual aesthetics: an instantiation of the composition perspective. Technol. Soc. 65, 101536 (2021). https://doi.org/10.1016/j.techsoc.2021.101536
Marković, S.: Components of aesthetic experience: aesthetic fascination, aesthetic appraisal, and aesthetic emotion. i-Perception 3, 1–17 (2012). https://doi.org/10.1068/i0450aap
Mazzi, G.L., Mitchell, J., Carausu, F.: Data Uncertainties: their Sources and Consequences, pp. 1–33 (2019)
MaçAs, C., Lourenço, N., MacHado, P.: Evolving visual artefacts based on consumption patterns. Int. J. Arts Technol. 12 (2020). https://doi.org/10.1504/IJART.2020.107693
McCandless, D.: Beautiful News: Positive Trends, Uplifting Stats, Creative Solutions. Harper Design, New York (2022)
Menninghaus, W., et al.: What are aesthetic emotions? Psychol. Rev. 126, 171–195 (2019). https://doi.org/10.1037/rev0000135
Midway, S.R.: Principles of effective data visualization. Patterns 1(9), 100141 (2020). https://doi.org/10.1016/j.patter.2020.100141
Moere, A.V., Purchase, H., Leuven, K.U.: On the role of design in information visualization. Inf. Visual. 10, 356–371 (2011). https://doi.org/10.1177/1473871611415996
Olalekun, A., Olubunmi, O., Samson, O., Oluwatoyin, F.: Effective management decision making and organisational excellence: a theoretical review. Int. J. Bus. Manage. 9(1), 144–150 (2021). https://doi.org/10.24940/theijbm/2021/v9/i1/bm2101-049
O. Wilke, C.: Fundamentals of Data Visualization. O’Reilly Media, Sebastopol (2019)
Padilla, L., Kay, M., Hullman, J.: Uncertainty visualizations. J. Cogn. Eng. Decis. Making 6(1), 30–56 (2020). https://doi.org/10.1177/1555343411432338
Padilla, L.M., Powell, M., Kay, M., Hullman, J.: Uncertain about uncertainty: how qualitative expressions of forecaster confidence impact decision-making with uncertainty visualizations. Front. Psychol. 11, 1–23 (2021). https://doi.org/10.3389/fpsyg.2020.579267
Perkhofer, L., Walchshofer, C., Hofer, P.: Does design matter when visualizing Big Data? An empirical study to investigate the effect of visualization type and interaction use. J. Manage. Control 31(1-2), 55–95 (2020). https://doi.org/10.1007/s00187-020-00294-0
Pinney, J., Carroll, F., Chew, E.: Valuable insights into the visualisation of uncertainty in data as a means to navigating business risks and making better strategic decisions. In: Cardiff, AMI Conference, p. 22 (2021)
Prezenski, S., Brechmann, A., Wolff, S., Russwinkel, N., West, R.L.: A cognitive modeling approach to strategy formation in dynamic decision making. Front. Psychol. 8, 1–18 (2017). https://doi.org/10.3389/fpsyg.2017.01335
Quispel, A., Maes, A., Schilperoord, J.: Aesthetics and clarity in information visualization: the designer’s perspective. Arts 7(4), 72 (2018). https://doi.org/10.3390/arts7040072
Sadiku, M., Adebowale, S., Musa, S., Akujuobi, C.: Data visualization. Int. J. Eng. Res. Adv. Technol. (IJERAT) 2(12), 11–16 (2016)
Schoemaker, P.J., Russo, J.E.: Decision-making (2018). https://doi.org/10.1057/9781137294678.0160
Schumpeter, J.A.: Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest and the Business Cycles. Harvard University Press, Cambridge (1934)
Sinar, E.: Data visualization. In: Tonidandel, S., King, E.B., Cortina, J.M. (eds.) Big Data at Work, 1st edn., Chap. 5, p. 43. Routledge, New York (2015). https://doi.org/10.1080/15228959.2015.1060147
Skov, M., Nadal, M.: A farewell to art: aesthetics as a topic in psychology and neuroscience. Perspect. Psychol. Sci. 15, 630–642 (2020). https://doi.org/10.1177/1745691619897963
Smith, A.F., Messenger, M., Hall, P., Hulme, C.: The role of measurement uncertainty in health technology assessments (HTAs) of In Vitro tests. PharmacoEconomics 36(7), 823–835 (2018). https://doi.org/10.1007/s40273-018-0638-1
Sniazhko, S.: Uncertainty in decision-making: a review of the international business literature. Cogent Bus. Manage. 6 (2019). https://doi.org/10.1080/23311975.2019.1650692
Spiegelhalter, D.: Risk and uncertainty communication. Annu. Rev. Stat. Appl. 4, 31–60 (2017). https://doi.org/10.1146/annurev-statistics-010814-020148
Tufte, E.R.: The Visual Display of Quantitative Information, 2nd edn. Graphics Press, Cheshire (1983)
Wassiliwizky, E., Menninghaus, W.: Why and how should cognitive science care about aesthetics? (2021). https://doi.org/10.1016/j.tics.2021.03.008
Wiecek, A., Wentzel, D., Landwehr, J.R.: The aesthetic fidelity effect. Int. J. Res. Mark. 36, 542–557 (2019). https://doi.org/10.1016/j.ijresmar.2019.03.002
Yan Yu, Z.: Visualizing uncertainty. Ph.D. thesis, Northeastern University (2018). https://doi.org/10.1075/idjdd.12.3.07erv
Yu, W., et al.: Visually aware recommendation with aesthetic features. VLDB J. 30(4), 495–513 (2021). https://doi.org/10.1007/s00778-021-00651-y
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pinney, J., Carroll, F. (2022). Designing for Interaction: Determining the Most Influential Aesthetic Factors for Effective Visualisation of Uncertainty. In: Yamamoto, S., Mori, H. (eds) Human Interface and the Management of Information: Visual and Information Design. HCII 2022. Lecture Notes in Computer Science, vol 13305. Springer, Cham. https://doi.org/10.1007/978-3-031-06424-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-06424-1_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06423-4
Online ISBN: 978-3-031-06424-1
eBook Packages: Computer ScienceComputer Science (R0)