Skip to main content

Improving AMD Diagnosis by the Simultaneous Identification of Associated Retinal Lesions

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Age-related Macular Degeneration (AMD) is the predominant cause of blindness in developed countries, specially in elderly people. Moreover, its prevalence is increasing due to the global population ageing. In this scenario, early detection is crucial to avert later vision impairment. Nonetheless, implementing large-scale screening programmes is usually not viable, since the population at-risk is large and the analysis must be performed by expert clinicians. Also, the diagnosis of AMD is considered to be particularly difficult, as it is characterized by many different lesions that, in many cases, resemble those of other macular diseases. To overcome these issues, several works have proposed automatic methods for the detection of AMD in retinography images, the most widely used modality for the screening of the disease. Nowadays, most of these works use Convolutional Neural Networks (CNNs) for the binary classification of images into AMD and non-AMD classes. In this work, we propose a novel approach based on CNNs that simultaneously performs AMD diagnosis and the classification of its potential lesions. This latter secondary task has not yet been addressed in this domain, and provides complementary useful information that improves the diagnosis performance and helps understanding the decision. A CNN model is trained using retinography images with image-level labels for both AMD and lesion presence, which are relatively easy to obtain. The experiments conducted in several public datasets show that the proposed approach improves the detection of AMD, while achieving satisfactory results in the identification of most lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bird, A.C., et al.: An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv. Ophthalmol. 39(5), 367–374 (1995). https://doi.org/10.1016/S0039-6257(05)80092-X

    Article  Google Scholar 

  2. Burlina, P.M., Joshi, N., Pacheco, K.D., Freund, D.E., Kong, J., Bressler, N.M.: Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA Ophthalmol. 136(12), 1359–1366 (2018). https://doi.org/10.1001/jamaophthalmol.2018.4118

    Article  Google Scholar 

  3. Burlina, P.M., Joshi, N., Pekala, M., Pacheco, K.D., Freund, D.E., Bressler, N.M.: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135(11), 1170–1176 (2017). https://doi.org/10.1001/jamaophthalmol.2017.3782

    Article  Google Scholar 

  4. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997). https://doi.org/10.1023/A:1007379606734

    Article  MathSciNet  Google Scholar 

  5. Farnell, D.J.J., et al.: Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J. Franklin Inst. (2008). https://doi.org/10.1016/j.jfranklin.2008.04.009

    Article  MATH  Google Scholar 

  6. Fu, H., et al.: ADAM: automatic detection challenge on age-related macular degeneration (2020). https://doi.org/10.21227/dt4f-rt59

  7. González-Gonzalo, C., et al.: Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmol. 98(4), 368–377 (2020). https://doi.org/10.1111/aos.14306

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). ICCV, Washington, DC, USA, pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123

  9. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  10. Kanski, J.J., Bowling, B.: Clinical Ophthalmology: A Systematic Approach, 7th edn. Elsevier Health Sciences, New York (2011)

    Google Scholar 

  11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  12. Li, X., Jia, M., Islam, M.T., Yu, L., Xing, L.: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans. Med. Imaging 39(12), 4023–4033 (2020). https://doi.org/10.1109/TMI.2020.3008871

    Article  Google Scholar 

  13. Liefers, B., et al.: A deep learning model for segmentation of geographic atrophy to study its long-term natural history. Ophthalmology 127(8), 1086–1096 (2020). https://doi.org/10.1016/j.ophtha.2020.02.009

    Article  Google Scholar 

  14. Mookiah, M.R.K., et al.: Automated detection of age-related macular degeneration using empirical mode decomposition. Knowl.-Based Syst. 89, 654–668 (2015). https://doi.org/10.1016/j.knosys.2015.09.012

    Article  Google Scholar 

  15. Pead, E., et al.: Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv. Ophthalmol. 64(4), 498–511 (2019). https://doi.org/10.1016/j.survophthal.2019.02.003

    Article  Google Scholar 

  16. Saksens, N.T., et al.: Macular dystrophies mimicking age-related macular degeneration. Prog. Retin. Eye Res. 39, 23–57 (2014). https://doi.org/10.1016/j.preteyeres.2013.11.001

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  18. Tan, J.H., et al.: Age-related macular degeneration detection using deep convolutional neural network. Futur. Gener. Comput. Syst. 87, 127–135 (2018). https://doi.org/10.1016/j.future.2018.05.001

    Article  Google Scholar 

  19. Ting, D.S.W., et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22), 2211–2223 (2017). https://doi.org/10.1001/jama.2017.18152

    Article  Google Scholar 

  20. Ting, D.S., et al.: Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retin. Eye Res. 72, 100759 (2019). https://doi.org/10.1016/j.preteyeres.2019.04.003

  21. Wong, W.L., et al.: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2(2), e106–e116 (2014). https://doi.org/10.1016/S2214-109X(13)70145-1

  22. Zheng, Y., et al.: An automated drusen detection system for classifying age-related macular degeneration with color fundus photographs. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 1448–1451 (2013). https://doi.org/10.1109/ISBI.2013.6556807

Download references

Acknowledgments

This work was funded by Instituto de Salud Carlos III, Government of Spain, and the European Regional Development Fund (ERDF) of the European Union (EU) through the DTS18/00136 research project; Ministerio de Ciencia e Innovación, Government of Spain, through RTI2018-095894-B-I00 and PID2019-108435RB-I00 research projects; Axencia Galega de Innovación (GAIN), Xunta de Galicia, ref. IN845D 2020/38; Xunta de Galicia and the European Social Fund (ESF) of the EU through the predoctoral grant contracts ref. ED481A-2017/328 and ref. ED481A 2021/140; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, through Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, is funded by Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Morano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morano, J., Hervella, Á.S., Rouco, J., Novo, J., Fernández-Vigo, J.I., Ortega, M. (2022). Improving AMD Diagnosis by the Simultaneous Identification of Associated Retinal Lesions. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics