Skip to main content

Real-Time Respiration Monitoring of Neonates from Thermography Images Using Deep Learning

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

In this work, we present an approach for non-contact automatic extraction of respiration in infants using infrared thermography video sequences, which were recorded in a neonatal intensive care unit. The respiratory signal was extracted in real-time on low-cost embedded GPUs by analyzing breathing-related temperature fluctuations in the nasal region. The automatic detection of the patient’s nose was performed using the Deep Learning-based YOLOv4-Tiny object detector. Additionally, the head was detected for movement tracking. A leave-one-out cross validation showed a mean intersection over union of 79% and a mean average precision of 93% for the detection algorithm. Since no clinical reference was provided, the extracted respiratory activity was validated for video sequences without motion artifacts using Farnebäck’s Optical Flow algorithm. A mean MAE of 8.5 breaths per minute and a mean \(\mathrm{F}_{1}\)-score of 80% for respiration detection were achieved. The model inference on NVIDIA Jetson modules showed a performance of 32 fps on the Xavier NX and 62 fps on the Xavier AGX. These outcomes showed promising results for the real-time extraction of respiratory activity from thermography recordings of neonates using Deep Learning-based techniques on embedded GPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, A.K., Heimann, K., Jergus, K., Orlikowsky, T., Leonhardt, S.: Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed. Eng. Online 10(1), 1–17 (2011)

    Article  Google Scholar 

  2. Berrar, D.: Cross-validation. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 542–545. Academic Press, Oxford (2019)

    Chapter  Google Scholar 

  3. Bochkovskiy, A.: Yolo_mark - github repository (2019). https://github.com/AlexeyAB/Yolo_mark. Accessed 06 Dec 2021

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv: 2004.10934 (2020)

  5. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  6. Ferris, T., Shepley, M.: The design of neonatal incubators: a systems-oriented, human-centered approach. J. Perinatol. 33, S24–S31 (2013)

    Article  Google Scholar 

  7. van Gastel, M., Stuijk, S., de Haan, G.: Robust respiration detection from remote photoplethysmography. Biomed. Opt. Express 7(12), 4941–4957 (2016)

    Article  Google Scholar 

  8. Gleichauf, J., et al.: Automated non-contact respiratory rate monitoring of neonates based on synchronous evaluation of a 3D time-of-flight camera and a microwave interferometric radar sensor. Sensors 21(9), 2959 (2021)

    Article  Google Scholar 

  9. Greneker, E.: Radar sensing of heartbeat and respiration at a distance with applications of the technology. In: Radar 97 (Conf. Publ. No. 449), pp. 150–154 (1997)

    Google Scholar 

  10. Heimann, K., Jergus, K., Abbas, A.K., Heussen, N., Leonhardt, S., Orlikowsky, T.: Infrared thermography for detailed registration of thermoregulation in premature infants. J. Perinat. Med. 1–8 (2013)

    Google Scholar 

  11. Hoog Antink, C., et al.: Fast body part segmentation and tracking of neonatal video data using deep learning. Med. Biol. Eng. Comput. 58(12), 3049–3061 (2020). https://doi.org/10.1007/s11517-020-02251-4

    Article  Google Scholar 

  12. Hoog Antink, C., Lyra, S., Paul, M., Yu, X., Leonhardt, S.: A broader look: camera-based vital sign estimation across the spectrum. Yearb. Med. Inform. 28(01), 102–114 (2019)

    Article  Google Scholar 

  13. Kinney, M., Howson, C., McDougall, L., Lawn, J.: Executive summary for born too soon: the global action report on preterm birth. March of Dimes, PMNCH (World Health Organization) (2012)

    Google Scholar 

  14. Kopaczka, M., Kolk, R., Schock, J., Burkhard, F., Merhof, D.: A thermal infrared face database with facial landmarks and emotion labels. IEEE Trans. Instrum. Meas. 1–13 (2019)

    Google Scholar 

  15. Liu, L., et al.: Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the sustainable development goals. LANCET 388 (2016)

    Google Scholar 

  16. Lorato, I., Bakkes, T., Stuijk, S., Meftah, M., De Haan, G.: Unobtrusive respiratory flow monitoring using a thermopile array: a feasibility study. Appl. Sci. 9(12), 2449 (2019)

    Article  Google Scholar 

  17. Lorato, I., et al.: Multi-camera infrared thermography for infant respiration monitoring. Biomed. Opt. Express 11(9), 4848–4861 (2020)

    Article  Google Scholar 

  18. Lorato, I., et al.: Towards continuous camera-based respiration monitoring in infants. Sensors 21(7), 2268 (2021)

    Article  Google Scholar 

  19. Lund, C.H., et al.: Neonatal skin care: clinical outcomes of the AWHONN/NANN evidence-based clinical practice guideline. J. Obstet. Gynecol. Neonatal Nurs. 30(1), 41–51 (2001)

    Article  Google Scholar 

  20. Lyra, S., et al.: A deep learning-based camera approach for vital sign monitoring using thermography images for ICU patients. Sensors 21(4) (2021)

    Google Scholar 

  21. Lyra, S., Paul, M.: Organic led panels for pulse rate measurement using photoplethysmography imaging. In: Proceedings of the International Student Scientific Conference Poster, pp. BI04 1–4 (2019)

    Google Scholar 

  22. Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019)

    Article  Google Scholar 

  23. Pereira, C.B., et al.: Estimation of respiratory rate from thermal videos of preterm infants. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3818–3821. IEEE (2017)

    Google Scholar 

  24. Pereira, C.B., et al.: Noncontact monitoring of respiratory rate in newborn infants using thermal imaging. IEEE Trans. Biomed. Eng. 66(4), 1105–1114 (2018)

    Article  Google Scholar 

  25. Reuter, S., Moser, C., Baack, M.: Respiratory distress in the newborn. Pediatr. Rev. 35(10), 417 (2014)

    Article  Google Scholar 

  26. Reza, A.: Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. VLSI Sig. Process. 38, 35–44 (2004)

    Google Scholar 

  27. Shelov, S.P., Altmann, T.R. (eds.): Caring for Your Baby and Young Child, 5th edn. American Academy of Pediatrics, Itasca (2005)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the effort from the authors of the YOLOv4 object detection algorithm and Kopaczka et al. for providing the adult IR dataset. The authors gratefully acknowledge financial support provided by German Research Foundation [Deutsche Forschungsgemeinschaft, LE 817/32-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Lyra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyra, S., Groß-Weege, I., Leonhardt, S., Lüken, M. (2022). Real-Time Respiration Monitoring of Neonates from Thermography Images Using Deep Learning. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics