Skip to main content

Frame Adaptive Rate Control Scheme for Video Compressive Sensing

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Measurement coding compresses the output of compressive image sensors to improve the image/video transmission efficiency. In these coding systems, rate control plays a vital role. The major purpose of rate control is to determine the quantization parameters (or quantization stepsizes) to control the bitrate under available bandwidth (bits limitation) while maximizing the image/video quality. However, most of the existing rate control algorithms apply iterations to find the best quantization parameters, so it suffers from a long processing time and can’t efficiently support video processing. This paper presents a frame adaptive rate control scheme for measurement coding. Firstly, the initialized quantization parameter (QP) of the first frame is determined by the triangle quantization method. Moreover, frame adaptive QP adjustment is proposed to refine the QP for each frame. As a result, this work improves the video quality up to 1.56 dB PSNR and reduces the processing time up to 53% compared to the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boufounos, P.T.: Universal rate-efficient scalar quantization. IEEE Trans. Inf. Theory 58(3), 1861–1872 (2011)

    Article  MathSciNet  Google Scholar 

  2. Candes, E., Romberg, J.: l1-magic: recovery of sparse signals via convex programming, vol. 4, p. 14 (2005). www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

  3. Chavdarova, T., et al.: Wildtrack: a multi-camera HD dataset for dense unscripted pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5030–5039 (2018)

    Google Scholar 

  4. Docef, A., Kossentini, F., Nguuyen-Phi, K., Ismaeil, I.R.: The quantized DCT and its application to DCT-based video coding. IEEE Trans. Image Process. 11(3), 177–187 (2002)

    Article  Google Scholar 

  5. Gan, L.: Block compressed sensing of natural images. In: 2007 15th International Conference on Digital Signal Processing, pp. 403–406. IEEE (2007)

    Google Scholar 

  6. Laska, J.N., Boufounos, P.T., Davenport, M.A., Baraniuk, R.G.: Democracy in action: quantization, saturation, and compressive sensing. Appl. Comput. Harmon. Anal. 31(3), 429–443 (2011)

    Article  MathSciNet  Google Scholar 

  7. Mun, S., Fowler, J.E.: DPCM for quantized block-based compressed sensing of images. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1424–1428. IEEE (2012)

    Google Scholar 

  8. Peetakul, J., Zhou, J., Wada, K.: A measurement coding system for block-based compressive sensing images by using pixel-domain features. In: 2019 Data Compression Conference (DCC), pp. 599–599. IEEE (2019)

    Google Scholar 

  9. Tran, T.T., Peetakul, J., Pham, C.D., Zhou, J.: Bi-directional intra prediction based measurement coding for compressive sensing images. In: 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE (2020)

    Google Scholar 

  10. Wan, R., Zhou, J., Huang, B., Zeng, H., Fan, Y.: APMC: adjacent pixels based measurement coding system for compressively sensed images. IEEE Trans. Multimedia (2021)

    Google Scholar 

  11. Wang, H., et al.: MCL-JCV: a JND-based h. 264/avc video quality assessment dataset. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1509–1513. IEEE (2016)

    Google Scholar 

  12. Zack, G.W., Rogers, W.E., Latt, S.A.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977)

    Article  Google Scholar 

  13. Zhou, J., Zhou, D., Guo, L., Takeshi, Y., Goto, S.: Measurement-domain intra prediction framework for compressively sensed images. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuma Kimishima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kimishima, F., Yang, J., Tran, T.T.T., Zhou, J. (2022). Frame Adaptive Rate Control Scheme for Video Compressive Sensing. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics