Skip to main content

Towards an Efficient Facial Image Compression with Neural Networks

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Digital images are more and more part of everyday life. Efficient compression methods are needed to reduce the disk-space usage for their storage and the bandwidth for their transmission while keeping the resolution and the visual quality of the reconstructed images as close to the original images as possible. Not all images have the same importance. The facial images are being extensively used in many applications (e.g., law enforcement, social networks) and require high efficient facial image compression schemes in order to not compromise face recognition and identification (e.g., for surveillance and security scenarios). For this reason, we propose a promising approach that consists of a custom loss that combines the two tasks of image compression and face recognition. The results show that our method compresses efficiently face images guaranteeing high perceptive quality and face verification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This acronym is a file format for LZMA archives.

  2. 2.

    It is available here https://github.com/timesler/facenet-pytorch.

References

  1. Ballé, J., Laparra, V., Simoncelli, E.: End-to-end optimized image compression. In: Proceedings of the International Conference on Learning Representation (ICLR) (November 2017)

    Google Scholar 

  2. Bian, N., Liang, F., Fu, H., Lei, B.: A deep image compression framework for face recognition. In: 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), pp. 99–104 (2019). https://doi.org/10.1109/CCHI.2019.8901914

  3. Bryt, O., Elad, M.: Compression of facial images using the K-SVD algorithm. J. Vis. Commun. Image Represent. 19(4), 270–282 (2008). https://doi.org/10.1016/j.jvcir.2008.03.001

    Article  Google Scholar 

  4. Chen, Z., He, T.: Learning based facial image compression with semantic fidelity metric. Neurocomputing 338, 16–25 (2019). https://doi.org/10.1016/j.neucom.2019.01.086

    Article  Google Scholar 

  5. CLIC: CLIC, Workshop and Challenge on Learned Image Compression. http://www.compression.cc/. Accessed 26 Apr 2021

  6. CVPR: CVPR 2020. http://cvpr2020.thecvf.com/. Accessed 26 Apr 2021

  7. Elad, M., Goldenberg, R., Kimmel, R.: Low bit-rate compression of facial images. IEEE Trans. Image Process. 16, 2379–2383 (2007)

    Article  MathSciNet  Google Scholar 

  8. Epiphany, J.L., Danasingh, A.A.: Hardware implementation of LZMA data compression algorithm. Int. J. Appl. Inf. Syst. 5, 52–56 (2013)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems (ICONIP), vol. 63, pp. 2672–2680 (2014)

    Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hu, S., Duan, Y., Tao, X., Liu, Y., Zhang, X., Lu, J.: Content-aware facial image compression with deep learning method. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 516–521 (2020). https://doi.org/10.1109/WCSP49889.2020.9299680

  12. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Tech. rep., University of Massachusetts, Amherst (2007)

    Google Scholar 

  13. Hurtik, P., Perfilieva, I.: A hybrid image compression algorithm based on jpeg and fuzzy transform. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017). https://doi.org/10.1109/FUZZ-IEEE.2017.8015614

  14. Jassim, F., Qassim, H.: Five modulus method for image compression. Signal Image Process.: Int. J. 3, 19–28 (2012). https://doi.org/10.5121/sipij.2012.3502

    Article  Google Scholar 

  15. Krizhevsky, A., Hinton, G.: Using very deep autoencoders for content-based image retrieval. In: Proceedings of the 19th European Symposium on Artificial Neural Networks (ESANN) (2011)

    Google Scholar 

  16. Liu, X., Gan, Z., Liu, F.: Hierarchical subspace regression for compressed face image restoration. In: 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6 (2018). https://doi.org/10.1109/WCSP.2018.8555682

  17. Liu, Y., Kau, L.: Scalable face image compression based on principal component analysis and arithmetic coding. In: 2017 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW), pp. 265–266 (2017). https://doi.org/10.1109/ICCE-China.2017.7991097

  18. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738 (2015). https://doi.org/10.1109/ICCV.2015.425

  19. Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal Process.: Image Commun. 17, 3–48 (2002)

    Google Scholar 

  20. Ram, I., Cohen, I., Elad, M.: Facial image compression using patch-ordering-based adaptive wavelet transform. IEEE Signal Process. Lett. 21(10), 1270–1274 (2014). https://doi.org/10.1109/LSP.2014.2332276

    Article  Google Scholar 

  21. Santurkar, S., Budden, D., Shavit, N.: Generative compression. In: Proceedings of the Picture Coding Symposium (PCS) (2017)

    Google Scholar 

  22. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015). https://doi.org/10.1109/CVPR.2015.7298682

  23. Subramanya, A.: Image compression technique. IEEE Potentials 20(1), 19–23 (2001). https://doi.org/10.1109/45.913206

    Article  MathSciNet  Google Scholar 

  24. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders. In: Proceedings of the International Conference on Learning Representation (ICLR) (2017)

    Google Scholar 

  25. Toderici, G., et al.: Variable rate image compression with recurrent neural networks. In: Proceedings of the International Conference on Learning Representation (ICLR) (2016)

    Google Scholar 

  26. Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 5435–5443 (2017). https://doi.org/10.1109/CVPR.2017.577

  27. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008). https://doi.org/10.1145/1390156.1390294

  28. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992). https://doi.org/10.1109/30.125072

  29. Wang, T., Mallya, A., Liu, M.: One-shot free-view neural talking-head synthesis for video conferencing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  30. Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1398–1402 (2003). https://doi.org/10.1109/ACSSC.2003.1292216

  31. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016). https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

  32. Zhang, Y., Cai, Z., Xiong, G.: A new image compression algorithm based on non-uniform partition and u-system. IEEE Trans. Multimed. 23, 1069–1082 (2021). https://doi.org/10.1109/TMM.2020.2992940

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ausilia Napoli Spatafora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Napoli Spatafora, M.A., Ortis, A., Battiato, S. (2022). Towards an Efficient Facial Image Compression with Neural Networks. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics