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Abstract. Embodied agents, trained to explore and navigate indoor
photorealistic environments, have achieved impressive results on stan-
dard datasets and benchmarks. So far, experiments and evaluations have
involved domestic and working scenes like offices, flats, and houses. In
this paper, we build and release a new 3D space with unique charac-
teristics: the one of a complete art museum. We name this environment
ArtGallery3D (AG3D). Compared with existing 3D scenes, the collected
space is ampler, richer in visual features, and provides very sparse oc-
cupancy information. This feature is challenging for occupancy-based
agents which are usually trained in crowded domestic environments with
plenty of occupancy information. Additionally, we annotate the coordi-
nates of the main points of interest inside the museum, such as paintings,
statues, and other items. Thanks to this manual process, we deliver a new
benchmark for PointGoal navigation inside this new space. Trajectories
in this dataset are far more complex and lengthy than existing ground-
truth paths for navigation in Gibson and Matterport3D. We carry on ex-
tensive experimental evaluation using our new space for evaluation and
prove that existing methods hardly adapt to this scenario. As such, we
believe that the availability of this 3D model will foster future research
and help improve existing solutions.

Keywords: Embodied Al - Visual Navigation - Sim2Real.

1 Introduction

In recent years, Embodied Al has benefited from the introduction of rich datasets
of 3D spaces and new tasks, ranging from exploration to PointGoal or Image-
Goal navigation [9)26]. Such availability of 3D data allows to train and deploy
modular embodied agents, thanks to powerful simulation platforms [23]. Despite
the high number of available spaces, though, the topology and nature of the
different scenes have low variance. Indeed, many environments represent apart-
ments, offices, or houses. In this paper, we take a different path and collect and
introduce the 3D space of an art gallery.

Current agents for embodied exploration feature a modular approach [BIT0J20].
While the agents are trained for embodied exploration using deep reinforcement
learning, this hierarchical paradigm allows for great adaptability on downstream
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tasks. Hence, models trained to explore the Gibson dataset can solve Point-
Goal navigation with satisfactory accuracy under the appropriate hypotheses.
Furthermore, accurate and realistic simulating platforms such as Habitat [23]
facilitate the deployment in the real world of the trained agents [7JI5]. While
agent architectures and simulating platforms are possible sources of improve-
ment, there is a third important direction of research that regards the availabil-
ity of 3D scenes to train and test the different agents. Indeed, the nature of the
different environments influences the variety of tasks that the agent can learn
and perform.

In this work, we contribute to this third direction by collecting and presenting
a previously unseen type of 3D space, i.e., a museum. This new environment for
embodied exploration and navigation, named ArtGallery3D (AG3D), presents
unique features when compared to flats and offices. First, the dimension of the
rooms drastically increases, and the same goes for the size of the building itself.
In our 3D model, some rooms are as big as 20 x 15 meters, while the floor hosting
the art gallery spans a total of 2,000 square meters. However, dimensions are
not the only difference with current available 3D spaces. As a second factor, the
presented gallery is incredibly rich in visual features, offering multiple paintings,
sculptures, and rare objects of historical and artistic interest. Every item rep-
resents a unique point of interest, and this is in contrast to traditional scenes
where all elements have approximately the same visual relevance. Finally, the
museum has sparse occupancy information. Many agents count on depth infor-
mation to plan short-term displacements. However, when placed in the middle
of an open empty hall, depth information is less informative. In our challenging
3D scene, the agent must learn to combine RGB and depth information and not
be overconfident on immediately available knowledge on the occupancy map. All
these challenges make our newly-proposed 3D space a valuable asset for current
and future research.

Together with the 3D model of the museum, we present a dataset for em-
bodied exploration and navigation. For the navigation task, we annotate the
position of most of the points of interest in the museum. Examples include nu-
merous paintings, sculptures, and other relevant objects. Finally, we present an
experimental analysis including the performance of existing architectures on this
novel benchmark and a discussion of potential future research directions made
possible by the presence of the collected 3D space.

2 Related Work

Both autonomous robotics [5I14] and embodied AT [STTIIRIGIT2I2T] have recently
witnessed a boost of interest, which has been enabled by the release of photore-
alistic 3D simulated environments. In such environments, algorithms for intelli-
gent exploration and navigation can be developed safely and more quickly than
in the real-world, before being easily deployed on real robotic platforms [T5[7I2].
Among the datasets of spaces, the most commonly used are MP3D [9], Gib-
son [26], HM3D [22], and Replica [25]. These datasets mainly contain house-like
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and office-like environments, with some environments taken from shops, garages,
churches, and restaurants. Rooms in such environments are generally cluttered,
and thus, rich of landmarks and texture information that the agent can exploit
while navigating. In contrast, the presented AG3D environment has been col-
lected in a museum, with larger, uncluttered spaces.

Algorithms developed in the simulated environments are typically trained
with deep reinforcement learning, both for exploration and navigation tasks.
The exploration task, which is often tackled to allow other downstream navi-
gation tasks [2728], consists in letting an agent equipped with visual sensors
(i.e., RGB-D cameras) freely navigate the environment to gather as much in-
formation as possible, usually in the form of an occupancy map. To this end,
intrinsic rewards have been proposed, which can be based on novelty, curiosity,
reconstruction enabling, and coverage [2T/TTJ20]. For the navigation tasks, the
agent is deployed in an unknown environment (i.e., no map provided) and given
some assignments in visual or textual form. These tasks include PointGoal nav-
igation [I], where the robot is expected to reach a coordinates-specified goal,
ImageGoal navigation [29], where the robot must reach an observation point in
the environment that matches an image-specified goal, and ObjectGoal navi-
gation [4], where the robot is asked to get to any instance of a label-specified
object in the environment. Other related tasks involve embodied question an-
swering [I3] and vision-and-language navigation [3JI6/T7], where the robot must
follow a natural language instruction to reach the goal. The environment pre-
sented in this paper is used for the exploration task and for the PointNav task.
In this latter case, we define a variant in which the goal is expressed in terms of
both coordinates and orientation.

3 ArtGallery3D (AG3D) Dataset

Existing datasets for indoor navigation comprise 3D acquisitions of different
types of buildings, ranging from private houses, that cover the majority of the
scenes, to offices and shops. Nevertheless, the focus of these datasets is on private
spaces and there is low variance in terms of dimension and contained objects.
In fact, to the best of our knowledge, among the publicly available datasets, no
acquired indoor environment is composed of large rooms with a low occupied/free
space ratio as in a museum. To overcome this deficiency in current literature we
release a new indoor dataset for exploration and navigation captured inside a
museum environment, called AG3Iﬂ

Acquisition. To build the 3D model of the art gallery, we employ a Matterport
camerzﬂ and related software. This technology is the same employed to collect
Matterport3D and HM3D datasets of spaces [0122] and is particularly suitable to
capture indoor photorealistic environments. We place the camera in the physical
environment and capture a 360° RGB-D image of the surrounding. Then, we

! The dataset has been collected at the Galleria Estense museum of Modena and can
be found at https://github.com/aimagelab/ag3d.
? https://matterport.com/it/cameras/pro2-3D-camera
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Fig. 1. On the left: a view of the 3D model of the acquired environment. On the right:
images captured during the acquisition of the scene.

repeat the same process after moving the camera approximately 1.5 meters away.
Using consecutive panoramic acquisitions, the software is able to compute the 3D
geometry of the space using depth information and the correspondences between
the same keypoints in different acquisitions. To capture the entire museum, we
make 232 different scans. Thanks to the high number of acquisitions, we are able
to reproduce fine geometric and visual details of the original space (see Fig. [1)).
The resulting 3D model consists of more than 1430 m? of navigable space.

Dataset details. The proposed dataset allows two different tasks: exploration
and navigation. Episodes for the exploration task include starting position and
orientation of the agent which are sampled uniformly over the entire navigable
space. The navigation dataset, instead, extends traditional PointGoal navigation
where episodes are defined with a starting pose and a goal coordinate, including
an additional final orientation vector. Conceptually, we can consider this setting
as the link between PointGoal navigation and ImageGoal navigation since the
goal is to rotate the agent towards a precise objective/scene, specifying the goal
using coordinates instead of an image. We name this new setting PointGoal+-+
navigation (PointNav++). To create the navigation dataset we annotate 147
points of interest mostly consisting of paintings and statues. The annotated goal
position is around 1 meter in front of the artwork and the goal orientation vec-
tor is directed to its center. For each point of interest, we define three episodes
with different difficulties based on the geodesic distance between start and goal
positions: easy (< 15m), medium (> 15m), and difficult (> 30m). In particular,
thanks to the dimension of the acquired environment, each difficult episode has
a geodesic distance larger than the longest path of MatterPort3D and Gibson
datasets. A comparison of the geodesic distance distribution of the episodes of
various available PointGoal navigation datasets is presented in Fig.[2] The intro-
duction of AG3D enables the evaluation of agents on long navigation episodes
which were previously not possible and highlights the inaccuracy of components
of the architecture that accumulate error over time. The exploration task dataset
contains 500k, 100, 1000 episodes respectively for training, validation, and test,
while the PointNav++ dataset includes 411 annotated navigation episodes.
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Fig. 2. Comparison of the distribution of the geodesic distances from starting position
to goal position of the episode for different datasets.

4 Architecture

We provide an experimental analysis comparing recently proposed approaches
on the devised environment, both for exploration and PointNav++ tasks. The
evaluated methods are consistent with recent literature on embodied AT [T0J20/5]
and adopt an architecture shown in Fig.|3| which is composed of a neural mapper,
a pose estimator, and a hierarchical navigation policy. The mapper generates a
representation of the environment while the agent moves, the pose estimator is in
charge of locating the agent in the environment, and the policy is responsible for
the movement capabilities of the agent. The core difference between the evaluated
approaches resides in the navigation policy, as described in the following. For
further details, we refer the reader to the original papers.

4.1 Mapper

The mapper module incrementally builds an occupancy grid map of the en-
vironment in parallel with the navigation task. At each timestep, the RGB-D
observations (s:gb, 5%) coming from the visual sensors are processed to extract a
L x L x 2 agent-centric map m; where the channels indicate, respectively, the
occupancy and exploration state of the currently observed region, and each pixel
of the map describes the state of an area of 5 x 5 cm. The RGB observation is
encoded using a ResNet-18 followed by a UNet, while the depth observation is
encoded using another UNet. The features extracted from the two modalities are
combined using CNNs at different levels of the output of the two UNet encoders
and a final UNet decoder is used to process the combined features to retrieve
the resulting local map m;. Following the method proposed in [20], our mapper
is not limited to predicting the occupancy map of the visible space but tries to
infer also occluded and not visible regions of the local map. The global level map
of the environment M; has a dimensionality of G x G x 2, where G > L, and is
built using local maps m; step-by-step. At each timestep the pose of the agent
x; is used to apply a rototranslation to the local map, then, the transformed
local map is finally registered to the global map M; with a moving average.
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Fig. 3. Overall architecture of the models employed for exploration and navigation on
AG3D.

4.2 Pose Estimator

In order to create a coherent representation of the environment during navi-
gation, a precise and robust pose estimation needs to be achieved. To address
problems like noise in the sensors and collisions with obstacles, we adopt a pose
estimator and avoid the direct use of sensor readings. The pose estimator com-
putes the pose of the agent x; = (x4, y¢, 0¢) where (2, y:) and 6; are its position
and orientation in the internal representation of the environment. The pose esti-
mate x; is computed in an incremental way, adding the displacement Ax; caused
by the action a; to the current pose estimate x;. In order to retrieve a first noisy
estimate of the displacement Ax;, we use the difference between consecutive
readings of the pose sensor (X;_1,X;). To account for errors in the sensor dis-
placement, consecutive local maps (m¢_1, m;) coming from the mapper are used
as feedback; m;_; is reprojected using Ax; to the same point of view of m; and
the concatenation of the transformed m;_; and m; is processed using a CNN to
retrieve the final robust pose displacement Ax;. At each timestep Ax; is used
to compute the pose of the robot x;:

Xy = X4-1 + A%y, (1)

where we assume xg = (0,0, 0) without loss of generality and xg corresponds to
the center of the map M; with the agent facing north.

4.3 Navigation Policy

The navigation policy is the module that determines the movement of the agent
in the environment. Its hierarchical design is required in order to allow the
agent to uncouple high-level navigation concepts, such as moving across different
rooms, and low-level concepts, like obstacle avoidance. The navigation policy is
defined by a three-component module consisting of a global farsighted policy, a
deterministic planner, and a local policy for atomic action inference.

Global Policy. The global policy is the high-level component of the navigation
policy and is responsible for extracting a long-term goal on the global map g;.
The global policy takes as input an enriched G' x G x 4 current global map M;"
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retrieved stacking the two-channel global map M, the one-hot representation of
the current position on the map, and the map of the already visited states. Mt'*'
is in parallel cropped with respect to the position of the agent and max-pooled
to a lower dimensionality H x H x 4. These two versions of M;" are stacked
together to obtain the final H x H x 8 input of the global policy. A CNN is used
to sample a point of a H x H grid that is converted to a goal position on the
global map ¢;. The global policy is trained with reinforcement learning using
PPO [24] to maximize different rewards used in literature.

In the experiments, we employ and compare different reward methods, namely
Coverage, Anticipation, and Curiosity. The Coverage reward [I0J21] maximizes
the information gathered at each time-step, expressed in terms of the area seen.
The Anticipation reward [20] is defined by comparing the predicted local occu-
pancy map with the ground-truth considering also occluded areas. The Curiosity
reward [19] encourages the agent towards areas that maximize the prediction er-
ror of a model trained to predict future states, thus improving the learning of
the dynamics of the environment.

Planner. Given the global goal on the map, the planner has the task of com-
puting a short-term goal on the map that the agent should reach. We employ
an A* algorithm on the global map M; to plan a path from the current position
of the agent to the global goal and a local goal I; is computed on the obtained
trajectory within a distance D from the agent.

Local Policy. The local policy is the module that allows the movement of the
agent in the environment and its objective is to reach the local goal I; determined
by the planner. The input of the local policy, formed by the relative displacement
from the position of the agent to the local goal [, and the current RGB obser-
vation s:gb, is processed to compute an atomic action a;. The available actions
are: move ahead 0.25m, turn left 10°, turn right 10°, with the addition of a stop
action when performing the navigation task. During training with reinforcement
learning, the reward of the local policy ri°¢@! encourages the agent to reduce the
distance from the local goal:

T)ltocal(xb Xt+1) p— d(Xt) — d(Xt+1), (2)

where d(x;) is the euclidean distance between the agent and the local goal I; at
timestep t. Following the hierarchical design, the global goal is sampled every
N¢ timesteps, while the local goal is reset if a new global goal is sampled, if the
previous local goal is found to be in an occupied area, or if the previous local
goal has been reached.

5 Experiments

We perform experiments on the proposed dataset comparing various models
trained with different global rewards on another dataset, with models trained
from scratch or finetuned on AG3D on exploration and PointNav++ to evaluate
the performance gap between these approaches and highlight the difference be-
tween the characteristics of AG3D compared to other datasets. A sample episode
of PointGoal++ navigation of ArtGallery3D is shown in Fig. [
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Fig. 4. An episode of PointNav++ in AG3D where consecutive frames have a distance
of 10 timesteps approximately. The red frame indicates the stop action in the traditional
PointNav task. The green frame corresponds to the stop action in PointNav+4+.

5.1 Experimental Setting

Evaluation protocol.

The baselines are trained with Coverage, Anticipation, and Curiosity re-
wards on the Gibson dataset for ~ 5M frames corresponding to 12 GPU-days on
NVIDIA V100. The best performing approach among the baseline is also both
trained from scratch and finetuned, but since high-quality textures and memory
occupancy of AG3D do not allow training with the same number of environ-
ments in parallel as Gibson, we trained the model from scratch on AG3D with
the same GPU time for &~ 2.8M frames, while the finetuned model is trained for
~ 1M additional frames.

For the exploration task we evaluate the following metrics: IoU (Intersection-
over-Union) between the map built during at end of the episode and the ground-
truth map. Acc measures the correctly reconstructed map in m?. AS indicates
the area seen by the agent during exploration (in m?). FIoU, OIoU, FAS, and
OAS measure, respectively, IoU and area seen for free and occupied portions
of the environment. TE and AE are the translation and angular error between
estimated and ground-truth pose measured respectively in meter and degrees.
PointGoal++ navigation is evaluated considering these metrics: D2G (Distance
to Goal) and OE (Orientation Error) are the mean geodesic distance to the goal
and the mean orientation error at the end of the episode. The orientation error
is computed considering the vector between the center of the artwork and the
position of the agent as ground-truth. SR (Success Rate) is the percentage of
episodes terminated successfully. In PointNav++ the agent needs to be within
0.2 meters to the goal and with an orientation error lower than 10 degrees.
PGSR (PointNav Success Rate) and ASR (Angular Success Rate) consider
only one component of SR; respectively D2G and OE. SPL and SoftSPL are
success rates weighted on the length of the trajectory of the agent.

Implementation details. The experiments are performed extracting 128 x 128
RGB-D observations from the acquired 3D model using the Habitat simulator.
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Table 1. Exploration results over the 100 episodes of the AG3D validation split in
noise-free and noisy conditions.

Model Training IoU 1 FIoU 1 OIoU 1 Acct AST FAST OAStT TE | AE |
Noise-Free
Anticipation [20] Gibson 0.163  0.170 0.157  294.4 290.6 258.3 323 0.0 0.0
Curiosity [19] Gibson 0.175 0.184  0.166 317.9 317.5 2817 35.8 0.0 0.0
Coverage [10]21] Gibson 0.214 0.237  0.191 403.1 384.3 341.1 432 0.0 0.0
Coverage [T012]] AG3D 0.219 0.239  0.200 400.6 354.6 316.6 38.0 0.0 0.0
Coverage [T012T] Gibson+AG3D 0.296 0.313 0.278 531.8 470.2 418.1 52.1 0.0 0.0
Noisy
Anticipation [20] Gibson 0.144 0.157 0.131 269.6 281.7 2499 319 0.48 2.95
Curiosity [19] Gibson 0.119  0.151 0.086 251.1 307.3 2728 345 2.62 1599
Coverage [T012T] Gibson 0.148  0.203 0.093 327.0 380.7 3379 428 298 12.54
Coverage [T0121] AG3D 0.144 0.200  0.088 320.0 356.4 3173 39.2 265 13.35
!

Coverage [10121] Gibson+AG3D 0.191 0.266 0.116 427.3 461.9 413.2 48.7 2.68 10.16

The maximum length of the exploration episodes during training is set to T' =
500. Regarding the mapping process, we set L = 101 and G = 2881 for the local
and global map dimensionalities. The action space grid H x H of the global
policy is 240 x 240. The maximum distance of the local goal I; from the position
of the agent is D = 0.5m for exploration and D = 0.25m for PointNav++-.

5.2 Experimental Results

Exploration results. As a first experiment, in Table [I] we compare the con-
sidered models on the exploration task on the AG3D validation set. Each explo-
ration episode has a length of 7" = 1000 timesteps during which the agent has to
disclose the initially unknown environment. Among the baselines trained only on
the Gibson dataset, the Coverage-based model achieves the best results in terms
of ToU and Area Seen in both noise-free and noisy settings. The model trained
with Coverage from scratch obtains competitive results even using fewer train-
ing frames (2.8M vs. 5M), showing the importance of adapting the models to
AG3D. This conclusion is supported by the fact that the model trained on Gib-
son and finetuned for 1M frames on AG3D achieves the best results on noise-free
and noisy settings, with a significant margin on the second-best model. In both
settings, the performance gap in terms of Area Seen (85.9m? and 81.2m?) and
IoU (0.082 and 0.043) between the best models trained only on Gibson dataset
and using AG3D denotes the need of adapting the weight of the models to the
different visual characteristics and occupation of AG3D.

PointNav++ results. Moving on to the navigation task, models trained on
exploration substitute the global goal with a fixed goal specified by the naviga-
tion episode. Experimental results on PointNav+-+, shown in Table [2| present
a similar trend as on the exploration task. In fact, the Coverage model has the
best results in terms of SPL and Success Rate related metrics among the models
trained only on Gibson. Moving to the Coverage models trained on AG3D, in the
noise-free setting, the model trained from scratch achieves the best results even
in comparison to the finetuned counterpart which is trained with more than
double the total observations (2.8M vs 6M). This behavior can be explained



10 Bigazzi et al.

Table 2. PointNav++ results on the AG3D navigation episodes under noise-free and
noisy settings.

Model Training SPL 1 SoftSPL + SRt PNSR 1t ASR 1 Steps | D2G | OE |
Noise-Free
Anticipation [20] Gibson 0.697 0.780 0.803  0.873 0.808  364.3 4.131 122
Curiosity [19] Gibson 0.625 0.706 0.732  0.803 0.732 4164 7934 17.0
Coverage [10]21] Gibson 0.760 0.838 0.876  0.954 0.883  314.6 0.700 5.2
Coverage [10]21] AG3D 0.805 0.875 0.898 0.973 0.908 270.3 0.268 4.8
Coverage [10]21] Gibson+AG3D  0.793 0.873 0.883  0.964 0.891 273.1 0.323 5.0
Noisy
Anticipation [20] Gibson 0.211 0.788 0.224  0.255 0.387  338.6  3.152 322
Curiosity [19] Gibson 0.225 0.655 0.243  0.275 0.341  446.3  9.746  38.7
Coverage [10]21] Gibson 0.228 0.783 0.243  0.260 0.392  348.6  3.165 34.1
Coverage [10]21] AG3D 0.235 0.832 0.248  0.273 0.445  306.2 2420 28.8
Coverage [10]21] Gibson+AG3D  0.373 0.853 0.399 0.443 0.543 283.8 1.430 19.8

by the performance of its mapper that is trained for more frames using visual
observation from AG3D (2.8M vs 1M) and extracts a more detailed map sacrific-
ing robustness and generalization. Accordingly, in the noisy setting, the higher
robustness of the Coverage-based model finetuned on AG3D regains the first
place with a noteworthy margin on the other models, while the Coverage model
trained from scratch goes down to the second position in terms of SPL and SR.
As in the case of the exploration task, the performance gap between models
trained on Gibson and using AG3D (0.045 and 0.145 for SPL in noise-free and
noisy settings) stresses the importance of adapting the parameters to the fea-
tures extracted from AG3D. Moreover, it is worth noting that the gap of the best
model from noise-free to noisy navigation (0.432 for SPL) is a consequence of
the length of the navigation episodes of AG3D, and the difficulty of performing
precise lengthy trajectories in the presence of noise. This is an interesting aspect
that the AG3D dataset offers for exploration in future works.

6 Conclusion

In this work, we introduced the AG3D photorealistic 3D dataset for embodied
exploration and PointGoal navigation tasks. The dataset has been collected in
an art gallery, which features larger and more uncluttered spaces compared to
most of the environments available in commonly used benchmark datasets. For
the PointNav task, we propose a variant that is more suitable to the type of envi-
ronment in the AG3D dataset. The variant entails not only reaching the specified
coordinates, as in standard PointNav but also assuming a specified orientation.
We also present an experimental comparison of state-of-the-art approaches on
the devised dataset, which can serve as baselines for future research on embodied
AT tasks performed in museum-like environments.
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