Skip to main content

Towards Open Zero-Shot Learning

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

In Generalized Zero-Shot Learning (GZSL), unseen categories (for which no visual data are available at training time) can be predicted by leveraging their class embeddings (e.g., a list of attributes describing them) together with a complementary pool of seen classes (paired with both visual data and class embeddings). Despite GZSL is arguably challenging, we posit that knowing in advance the class embeddings, especially for unseen categories, is an actual limit of the applicability of GZSL towards real-world scenarios. To relax this assumption, we propose Open Zero-Shot Learning (OZSL) as the problem of recognizing seen and unseen classes (as in GZSL) while also rejecting instances from unknown categories, for which neither visual data nor class embeddings are provided. We formalize the OZSL problem introducing evaluation protocols, error metrics and benchmark datasets. We also tackle the OZSL problem by proposing and evaluating the idea of performing unknown feature generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/FMarmoreo/OpenZeroShot.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. ArXiv abs/1701.07875 (2017)

    Google Scholar 

  2. Arora, G., Verma, V.K., Mishra, A., Rai, P.: Generalized zero-shot learning via synthesized examples. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  3. Chao, W.-L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 52–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_4

    Chapter  Google Scholar 

  4. Felix, R., Vijay Kumar, B.G., Reid, I., Carneiro, G.: Multi-modal cycle-consistent generalized zero-shot learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 21–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_2

    Chapter  Google Scholar 

  5. Gao, R., et al.: Zero-VAE-GAN: generating unseen features for generalized and transductive zero-shot learning. IEEE Trans. Image Process. 29, 3665–3680 (2020)

    Article  Google Scholar 

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS (2017)

    Google Scholar 

  7. Han, Z., Fu, Z., Chen, S., Yang, J.: Contrastive embedding for generalized zero-shot learning. In: CVPR (2021)

    Google Scholar 

  8. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D..: Mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  9. Huang, H., Wang, C., Yu, P.S., Wang, C.D.: Generative dual adversarial network for generalized zero-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  10. Jayaraman, D., Grauman, K.: Zero-shot recognition with unreliable attributes. In: NIPS (2014)

    Google Scholar 

  11. Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  12. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2014). https://doi.org/10.1109/TPAMI.2013.140

    Article  Google Scholar 

  13. Li, J., Jing, M., Lu, K., Ding, Z., Zhu, L., Huang, Z.: Leveraging the invariant side of generative zero-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  14. Mancini, M., Naeem, M.F., Xian, Y., Akata, Z.: Open world compositional zero-shot learning. In: CVPR (2021)

    Google Scholar 

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  16. Mishra, A., Reddy, M.S.K., Mittal, A., Murthy, H.A.: A generative model for zero shot learning using conditional variational autoencoders. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2269–22698 (2018)

    Google Scholar 

  17. Narayan, S., Gupta, A., Khan, F.S., Snoek, C.G., Shao, L.: Latent embedding feedback and discriminative features for zero-shot classification. In: The European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  18. Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006)

    Google Scholar 

  19. Sariyildiz, M.B., Cinbis, R.G.: Gradient matching generative networks for zero-shot learning. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2163–2173 (2019)

    Google Scholar 

  20. Scheirer, W., Rocha, A., Sapkota, A., Boult, T.: Towards open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2012)

    Google Scholar 

  21. Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., Akata, Z.: Generalized zero- and few-shot learning via aligned variational autoencoders. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8247–8255 (June 2019)

    Google Scholar 

  22. Shen, Y., Qin, J., Huang, L., Liu, L., Zhu, F., Shao, L.: Invertible zero-shot recognition flows. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 614–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_36

    Chapter  Google Scholar 

  23. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical report CNS-TR-2010-001, California Institute of Technology (2010)

    Google Scholar 

  24. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. In: Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence (2018)

    Google Scholar 

  25. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

    Google Scholar 

  26. Xian, Y., Sharma, S., Schiele, B., Akata, Z.: F-VAEGAN-D2: a feature generating framework for any-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

    Google Scholar 

  27. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  28. Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., Elgammal, A.: A generative adversarial approach for zero-shot learning from noisy texts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1004–1013 (2018)

    Google Scholar 

  29. Zhu, Y., Xie, J., Liu, B., Elgammal, A.: Learning feature-to-feature translator by alternating back-propagation for generative zero-shot learning. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Ivan Davila Carrazco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marmoreo, F., Carrazco, J.I.D., Cavazza, J., Murino, V. (2022). Towards Open Zero-Shot Learning. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics