Abstract
Zero-Shot Learning (ZSL) objective is to classify instances of classes that were not seen during the training phase. ZSL methods take advantage of side information, i.e., class attributes, to leverage information between the seen and unseen classes. Lately, generative methods have been used to synthesize unseen features in order to train a classifier for the unseen classes. Although generative methods obtain high performance, the learned distribution may not properly represent the real distribution of the unseen classes. We propose an approach to alleviate this issue by creating a new set of mixed features. These mixed features provided a new distribution for the generative method to learn from. By using these mixed features we obtained an +2.2% improvement over tf-VAEGAN in the Oxford Flowers (FLO) dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2016). https://doi.org/10.1109/TPAMI.2015.2487986
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Chao, W.-L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 52–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_4
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6114
Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2014). https://doi.org/10.1109/TPAMI.2013.140
Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558–1566. PMLR (2016)
Narayan, S., Gupta, A., Khan, F.S., Snoek, C.G.M., Shao, L.: Latent embedding feedback and discriminative features for zero-shot classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 479–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_29
Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006)
Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2751–2758. IEEE (2012)
Reed, S., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-grained visual descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 49–58 (2016)
Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-modal transfer. In: Advances in Neural Information Processing Systems 26 (2013)
Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B.: Latent embeddings for zero-shot classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 69–77 (2016)
Xian, Y., Lampert, H.C., Schiele, B., Akata, Z.: Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. TPAMI (2018)
Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2018)
Xian, Y., Sharma, S., Schiele, B., Akata, Z.: F-VAEGAN-D2: a feature generating framework for any-shot learning. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2019)
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Carrazco, J.I.D., Morerio, P., Bue, A.D., Murino, V. (2022). Mixing Zero-Shot Learning Up: Learning Unseen Classes from Mixed Features. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_51
Download citation
DOI: https://doi.org/10.1007/978-3-031-06430-2_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06429-6
Online ISBN: 978-3-031-06430-2
eBook Packages: Computer ScienceComputer Science (R0)