Abstract
Modern Unmanned Aerial Vehicles (UAV) equipped with cameras can play an essential role in speeding up the identification and rescue of people who have fallen overboard, i.e., man overboard (MOB). To this end, Artificial Intelligence techniques can be leveraged for the automatic understanding of visual data acquired from drones. However, detecting people at sea in aerial imagery is challenging primarily due to the lack of specialized annotated datasets for training and testing detectors for this task. To fill this gap, we introduce and publicly release the MOBDrone benchmark, a collection of more than 125K drone-view images in a marine environment under several conditions, such as different altitudes, camera shooting angles, and illumination. We manually annotated more than 180K objects, of which about 113K man overboard, precisely localizing them with bounding boxes. Moreover, we conduct a thorough performance analysis of several state-of-the-art object detectors on the MOBDrone data, serving as baselines for further research.
Supported by NAUSICAA - “NAUtical Safety by means of Integrated Computer-Assistance Appliances 4.0”, a project funded by the Tuscany region (CUP D44E20003410009).
D. Cafarelli, L. Ciampi and L. Vadicamo—Co-first authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amato, G., Ciampi, L., Falchi, F., Gennaro, C.: Counting vehicles with deep learning in onboard UAV imagery. In: 2019 IEEE Symposium on Computers and Communications (ISCC). IEEE, June 2019. https://doi.org/10.1109/iscc47284.2019.8969620
Amato, G., Ciampi, L., Falchi, F., Gennaro, C., Messina, N.: Learning pedestrian detection from virtual worlds. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11751, pp. 302–312. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30642-7_27
Cafarelli, D., et al.: MOBDrone: a large-scale drone-view dataset for man overboard detection, February 2022. https://doi.org/10.5281/zenodo.5996890
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, K., et al.: MMDetection: Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Ciampi, L., Messina, N., Falchi, F., Gennaro, C., Amato, G.: Virtual to real adaptation of pedestrian detectors. Sensors 20(18), 5250 (2020). https://doi.org/10.3390/s20185250
Ciampi, L., Santiago, C., Costeira, J., Gennaro, C., Amato, G.: Domain adaptation for traffic density estimation. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.5220/0010303401850195
Du, D., et al.: The unmanned aerial vehicle benchmark: object detection and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 375–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_23
European Maritime Safety Agency: Annual overview of marine casualties and incidents 2021 (2021)
Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: TOOD: task-aligned one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3510–3519, October 2021
Feraru, V.A., Andersen, R.E., Boukas, E.: Towards an autonomous UAV-based system to assist search and rescue operations in man overboard incidents. In: 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 57–64. IEEE (2020). https://doi.org/10.1109/SSRR50563.2020.9292632
Garay, E.: What Happens When Someone Falls Off a Cruise Ship (2017). https://www.cntraveler.com/story/what-happens-when-someone-falls-off-a-cruise-ship. Accessed 25 Jan 2022
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding YOLO series in 2021. arXiv preprint arXiv:2107.08430 (2021)
He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE International Conference on Computer Vision, ICCV 2017, pp. 2980–2988. IEEE Computer Society (2017). https://doi.org/10.1109/ICCV.2017.322
Hsieh, M.R., Lin, Y.L., Hsu, W.H.: Drone-based object counting by spatially regularized regional proposal network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4145–4153 (2017)
Leira, F.S., Johansen, T.A., Fossen, T.I.: Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera. In: 2015 IEEE Aerospace Conference, pp. 1–10. IEEE (2015). https://doi.org/10.1109/AERO.2015.7119238
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lygouras, E., Santavas, N., Taitzoglou, A., Tarchanidis, K., Mitropoulos, A., Gasteratos, A.: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors 19(16), 3542 (2019). https://doi.org/10.3390/s19163542
Mandal, M., Kumar, L.K., Vipparthi, S.K.: MOR-UAV: a benchmark dataset and baselines for moving object recognition in UAV videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2626–2635 (2020). https://doi.org/10.1145/3394171.3413934
Mou, J., Hu, T., Chen, P., Chen, L.: Cooperative MASS path planning for marine man overboard search. Ocean Eng. 235, 109376 (2021). https://doi.org/10.1016/j.oceaneng.2021.109376
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/tpami.2016.2577031
Sekachev, B. et al.: Computer Vision Annotation Tool (CVAT) (2020). https://github.com/openvinotoolkit/cvat
Varga, L.A., Kiefer, B., Messmer, M., Zell, A.: SeaDronesSee: a maritime benchmark for detecting humans in open water. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 2260–2270, January 2022
Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021. https://doi.org/10.1109/cvpr46437.2021.00841
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Zhu, P., et al.: Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 01, 1 (2021). https://doi.org/10.1109/TPAMI.2021.3119563
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: 9th International Conference on Learning Representations, ICLR 2021. OpenReview.net (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cafarelli, D. et al. (2022). MOBDrone: A Drone Video Dataset for Man OverBoard Rescue. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-06430-2_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06429-6
Online ISBN: 978-3-031-06430-2
eBook Packages: Computer ScienceComputer Science (R0)