Skip to main content

Deep Autoencoders for Anomaly Detection in Textured Images Using CW-SSIM

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13232))

Included in the following conference series:

Abstract

Detecting anomalous regions in images is a frequently encountered problem in industrial monitoring. A relevant example is the analysis of tissues and other products that in normal conditions conform to a specific texture, while defects introduce changes in the normal pattern. We address the anomaly detection problem by training a deep autoencoder, and we show that adopting a loss function based on Complex Wavelet Structural Similarity (CW-SSIM) yields superior detection performance on this type of images compared to traditional autoencoder loss functions. Our experiments on well-known anomaly detection benchmarks show that a simple model trained with this loss function can achieve comparable or superior performance to state-of-the-art methods leveraging deeper, larger and more computationally demanding neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C.: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int. J. Comput. Vis. 129(4), 1038–1059 (2021)

    Article  Google Scholar 

  3. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4183–4192 (2020)

    Google Scholar 

  4. Bergmann., P., Löwe., S., Fauser., M., Sattlegger., D., Steger., C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), pp. 372–380. SciTePress (2019)

    Google Scholar 

  5. Bölgen, N., Vaseashta, A.: Nanofibers for tissue engineering and regenerative medicine. In: Sontea, V., Tiginyanu, I. (eds.) 3rd International Conference on Nanotechnologies and Biomedical Engineering. IP, vol. 55, pp. 319–322. Springer, Singapore (2016). https://doi.org/10.1007/978-981-287-736-9_77

    Chapter  Google Scholar 

  6. Carrera, D., Manganini, F., Boracchi, G., Lanzarone, E.: Defect detection in SEM images of nanofibrous materials. IEEE Trans. Ind. Inf. 13(2), 551–561 (2016)

    Article  Google Scholar 

  7. Chetverikov, D., Hanbury, A.: Finding defects in texture using regularity and local orientation. Pattern Recogn. 35(10), 2165–2180 (2002)

    Article  Google Scholar 

  8. Freeman, W.T., Adelson, E.H., et al.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991)

    Article  Google Scholar 

  9. Haindl, M., Grim, J., Mikeš, S.: Texture defect detection. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 987–994. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74272-2_122

    Chapter  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  12. Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3077–3081. IEEE (2003)

    Google Scholar 

  13. Mojsilovic, A., Hu, H., Soljanin, E.: Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis. IEEE Trans. Image Process. 11(11), 1238–1248 (2002)

    Article  MathSciNet  Google Scholar 

  14. Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by CNN-based self-similarity. Sensors 18(1), 209 (2018)

    Article  Google Scholar 

  15. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  16. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–70 (2000)

    Article  Google Scholar 

  17. Ruff, L., Kauffmann, J.R., Vandermeulen, R.A., Montavon, G., Samek, W., Kloft, M., Dietterich, T.G., Müller, K.R.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021)

    Article  Google Scholar 

  18. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  19. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale transforms. IEEE Trans. Inf. Theory 38, 587–607 (1992)

    Article  MathSciNet  Google Scholar 

  20. Tsa, D.M., Wu, S.K.: Automated surface inspection using Gabor filters. Int. J. Adv. Manuf. Technol. 16(7), 474–482 (2000)

    Article  Google Scholar 

  21. Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1398–1402 (2003)

    Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Wang, Z., Simoncelli, E.P.: Translation insensitive image similarity in complex wavelet domain. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2005. vol. 2, pp. 573–576. IEEE (2005)

    Google Scholar 

  24. Zavrtanik, V., Kristan, M., Skočaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)

    Article  Google Scholar 

  25. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017)

    Google Scholar 

  26. Zujovic, J., Pappas, T.N., Neuhoff, D.L.: Structural similarity metrics for texture analysis and retrieval. In: IEEE International Conference on Image Processing (ICIP), pp. 2225–2228. IEEE (2009)

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of NVIDIA Corporation with the four RTX A6000 GPUs granted through the Applied Research Accelerator Program to Politecnico di Milano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Frittoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bionda, A., Frittoli, L., Boracchi, G. (2022). Deep Autoencoders for Anomaly Detection in Textured Images Using CW-SSIM. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics