Skip to main content

Distance-Based Random Forest Clustering with Missing Data

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13233))

Included in the following conference series:

  • 1226 Accesses

Abstract

In recent years there has been an increased interest in clustering methods based on Random Forests, due to their flexibility and their capability in describing data. One problem of current RF-clustering approaches is that they are not able to directly deal with missing data, a common scenario in many application fields (e.g. Bioinformatics): the usual solution in this case is to pre-impute incomplete data before running standard clustering methods. In this paper we present the first Random Forest clustering approach able to directly deal with missing data. We start from the very recent RatioRF distance for clustering [3], which has shown to outperform all other distance-based RF clustering schemes, extending the framework in two directions, which allow the integration of missing data mechanisms directly inside the clustering pipeline. Experimental results, based on 6 standard UCI ML datasets, are promising, also in comparison with some literature alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some experiments, not reported here, showed that empirical results would not change too much if we randomly choose one of the two paths.

References

  1. Aryal, S., Ting, K.M., Washio, T., Haffari, G.: A comparative study of data-dependent approaches without learning in measuring similarities of data objects. Data Min. Knowl. Disc. 34(1), 124–162 (2019). https://doi.org/10.1007/s10618-019-00660-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Bicego, M.: K-random forests: a K-means style algorithm for random forest clustering. In: Proceedings of International Joint Conference on Neural Networks (IJCNN 2019) (2019)

    Google Scholar 

  3. Bicego, M., Cicalese, F., Mensi, A.: RatioRF: a novel measure for random forest clustering based on the Tversky’s ratio model. IEEE Trans. Knowl. Data Eng. (2022, in press). https://doi.org/10.1109/TKDE.2021.3086147, https://ieeexplore.ieee.org/document/9446631

  4. Bicego, M., Escolano, F.: On learning random forests for random forest clustering. In: Proceedings of International Conference on Pattern Recognition, pp. 3451–3458 (2020)

    Google Scholar 

  5. Boluki, S., Dadaneh, S., Qian, X., Dougherty, E.: Optimal clustering with missing values. BMC Bioinform. 20(Suppl. 12), 321 (2019)

    Article  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  7. Chi, J., Chi, E., Baraniuk, R.: k-POD: a method for k-means clustering of missing data. Am. Stat. 70(1), 91–99 (2016)

    Article  MathSciNet  Google Scholar 

  8. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7(2–3), 81–227 (2012)

    MATH  Google Scholar 

  9. Datta, S., Bhattacharjee, S., Das, S.: Clustering with missing features: a penalized dissimilarity measure based approach. Mach. Learn. 107(12), 1987–2025 (2018). https://doi.org/10.1007/s10994-018-5722-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  11. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  13. Hathaway, R., Bezdek, J.: Fuzzy c-means clustering of incomplete data. IEEE Trans. Syst. Man Cybern. B (Cybern.) 31(5), 735–44 (2001)

    Article  Google Scholar 

  14. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  15. Jakobsen, J., Gluud, C., Wetterslev, J., Winkel, P.: When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts. BMC Med. Res. Methodol. 17, 162 (2017)

    Article  Google Scholar 

  16. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: Advances in Neural Information Processing Systems 19, pp. 985–992 (2006)

    Google Scholar 

  17. Perbet, F., Stenger, B., Maki, A.: Random forest clustering and application to video segmentation. In: Proceedings of British Machine Vision Conference, BMVC 2009, pp. 1–10 (2009)

    Google Scholar 

  18. Pigott, T.: A review of methods for missing data. Educ. Res. Eval. 7(4), 353–383 (2001)

    Article  Google Scholar 

  19. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., Burlington (1993)

    Google Scholar 

  20. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

    Article  MathSciNet  Google Scholar 

  21. Santos, M., Abreu, P., Wilk, S., Santos, J.: How distance metrics influence missing data imputation with k-nearest neighbours. Pattern Recogn. Lett. 136, 111–119 (2020)

    Article  Google Scholar 

  22. Shi, T., Horvath, S.: Unsupervised learning with random forest predictors. J. Comput. Graph. Stat. 15(1), 118–138 (2006)

    Article  MathSciNet  Google Scholar 

  23. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR 2008) (2008)

    Google Scholar 

  24. Stekhoven, D., Buhlmann, P.: Missforest: non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2011)

    Article  Google Scholar 

  25. Sterne, J., et al.: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, b2393 (2009)

    Article  Google Scholar 

  26. Ting, K., Zhu, Y., Carman, M., Zhu, Y., Zhou, Z.H.: Overcoming key weaknesses of distance-based neighbourhood methods using a data dependent dissimilarity measure. In: Proceedings of International Conference on Knowledge Discovery and Data Mining, pp. 1205–1214 (2016)

    Google Scholar 

  27. Troyanskaya, O., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    Article  Google Scholar 

  28. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)

    Article  Google Scholar 

  29. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  30. Wagstaff, K.: Clustering with missing values: no imputation required. In: Classification, Clustering, and Data Mining Applications, pp. 649–658 (2004)

    Google Scholar 

  31. Wagstaff, K.: Clustering with missing values: no imputation required. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications, pp. 649–658. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-17103-1_61

    Chapter  Google Scholar 

  32. Yan, D., Chen, A., Jordan, M.: Cluster forests. Comput. Stat. Data Anal. 66, 178–192 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhu, X., Loy, C., Gong, S.: Constructing robust affinity graphs for spectral clustering. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 1450–1457 (2014)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the anonymous reviewers for providing helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuele Bicego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raniero, M., Bicego, M., Cicalese, F. (2022). Distance-Based Random Forest Clustering with Missing Data. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics