Skip to main content

Exploring the Use of Efficient Projection Kernels for Motion Saliency Estimation

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

In this paper we investigate the potential of a family of efficient filters – the Gray-Code Kernels – for addressing visual saliency estimation guided by motion. Our implementation relies on the use of 3D kernels applied to overlapping blocks of frames and is able to gather meaningful spatio-temporal information with a very light computation. We introduce an attention module that reasons on the use of pooling strategies, combined in an unsupervised way to derive a saliency map highlighting the presence of motion in the scene. In the experiments we show that our method is able to effectively and efficiently identify the portion of the image where the motion is occurring, providing tolerance to a variety of scene conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The implementation of our method in Python will be made soon publicly available.

References

  1. Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23(2), 255–281 (2012)

    Article  Google Scholar 

  2. Ben-Artzi, G., Hel-Or, H., Hel-Or, Y.: The gray-code filter kernels. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 382–393 (2007)

    Article  Google Scholar 

  3. Bouwmans, T.: Recent advanced statistical background modeling for foreground detection-a systematic survey. Recent Pat. Comput. Sci. 4(3), 147–176 (2011)

    Google Scholar 

  4. Cong, R., Lei, J., Fu, H., Cheng, M.M., Lin, W., Huang, Q.: Review of visual saliency detection with comprehensive information. IEEE Trans. Circ. Syst. Video Technol. 29(10), 2941–2959 (2018)

    Article  Google Scholar 

  5. Faktor, A., Irani, M.: Video segmentation by non-local consensus voting. In: BMVC. vol. 2, p. 8 (2014)

    Google Scholar 

  6. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  7. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)

    Article  Google Scholar 

  8. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)

    Article  Google Scholar 

  9. Hel-Or, Y., Hel-Or, H.: Real-time pattern matching using projection kernels. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1430–1445 (2005)

    Article  Google Scholar 

  10. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  11. Jain, S.D., Xiong, B., Grauman, K.: FusionSeg: learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2126. IEEE (2017)

    Google Scholar 

  12. Korman, S., Avidan, S.: Coherency sensitive hashing. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1099–1112 (2015)

    Article  Google Scholar 

  13. Lee, D.S.: Effective gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)

    Article  Google Scholar 

  14. Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many figure-ground segments. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2192–2199 (2013)

    Google Scholar 

  15. Moshe, Y., Hel-Or, H.: Video block motion estimation based on gray-code kernels. IEEE Trans. Image Process. 18(10), 2243–2254 (2009)

    Article  MathSciNet  Google Scholar 

  16. Moshe, Y., Hel-Or, H., Hel-Or, Y.: Foreground detection using spatiotemporal projection kernels. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3210–3217. IEEE (2012)

    Google Scholar 

  17. Noceti, N., Delponte, E., Odone, F.: Spatio-temporal constraints for on-line 3D object recognition in videos. Comput. Vis. Image Underst. 113(12), 1198–1209 (2009)

    Article  Google Scholar 

  18. Noceti, N., Sciutti, A., Sandini, G.: Cognition helps vision: recognizing biological motion using invariant dynamic cues. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9280, pp. 676–686. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23234-8_62

    Chapter  Google Scholar 

  19. Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1187–1200 (2013)

    Article  Google Scholar 

  20. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9(1), 62–66 (1979)

    Article  Google Scholar 

  21. Ouyang, W., Zhang, R., Cham, W.K.: Fast pattern matching using orthogonal Haar transform. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3050–3057. IEEE (2010)

    Google Scholar 

  22. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: Proceedings of the IEEE international conference on computer vision. pp. 1777–1784 (2013)

    Google Scholar 

  23. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2663–2672 (2017)

    Google Scholar 

  24. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)

    Google Scholar 

  25. Rea, F., Vignolo, A., Sciutti, A., Noceti, N.: Human motion understanding for selecting action timing in collaborative human-robot interaction. Front. Robot. AI 6, 58 (2019)

    Article  Google Scholar 

  26. Stagliano, A., Noceti, N., Verri, A., Odone, F.: Online space-variant background modeling with sparse coding. IEEE Trans. Image Process. 24(8), 2415–2428 (2015)

    Article  MathSciNet  Google Scholar 

  27. Vignolo, A., Noceti, N., Rea, F., Sciutti, A., Odone, F., Sandini, G.: Detecting biological motion for human-robot interaction: a link between perception and action. Front. Robot. AI p. 14 (2017)

    Google Scholar 

  28. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv preprint arXiv:1706.09364 (2017)

  29. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1385–1392 (2013)

    Google Scholar 

  30. Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2464–2471. IEEE (2010)

    Google Scholar 

  31. Xiao, F., Jae Lee, Y.: Track and segment: an iterative unsupervised approach for video object proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 933–942 (2016)

    Google Scholar 

  32. Zhuo, T., Cheng, Z., Zhang, P., Wong, Y., Kankanhalli, M.: Unsupervised online video object segmentation with motion property understanding. IEEE Trans. Image Process. 29, 237–249 (2019)

    Article  MathSciNet  Google Scholar 

  33. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 2, pp. 28–31. IEEE (2004)

    Google Scholar 

Download references

Acknowledgements

This work has been carried out at the Machine Learning Genoa (MaLGa) center, Università di Genova (IT). It has been supported by AFOSR with the project “Cognitively-inspired architectures for human motion understanding”, grant no. FA8655-20-1-7035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Nicora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nicora, E., Noceti, N. (2022). Exploring the Use of Efficient Projection Kernels for Motion Saliency Estimation. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics