Skip to main content

Densification of Sparse Optical Flow Using Edges Information

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13233))

Included in the following conference series:

  • 1227 Accesses

Abstract

Optical flow methods, which estimate a dense motion field starting from a sparse one, are playing an important role in many visual learning and recognition applications. The proposed system is based only on sparse optical flow and line detector. It is able to densify the starting optical flow, reaching good performances in objective and subjective manner, using common applications like clustering and standard KITTI evaluation kit. In particular, an appreciable improvement has been achieved in terms of quantity of motion vectors grows (up to 540%). Since often in smart cameras both optical flow and lines are available, the proposed approach avoids overloading the Engine Control Unit to transmit the entire image flow and allows reducing the power consumption, realizing a real-time robust system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Understand. 134, 1–21 (2015)

    Google Scholar 

  2. Senst, T., Geistert, J., Sikora, T.: Robust local optical flow: long-range motions and varying illuminations. In: International Conference on Image Processing (2016)

    Google Scholar 

  3. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1744–1757 (2012)

    Google Scholar 

  4. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In: Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  5. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving interpolation of correspondences for optical. In: Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  6. Manandhar, S., Bouthemy, P., Welf, E., Roudot, P., Kervrann, C.: A sparse-to-dense method for 3D optical flow estimation in 3D light-microscopy image sequences. In: 15th IEEE International Symposium on Biomedical Imaging ISBI (2018)

    Google Scholar 

  7. Senst, T., Eiselein, V., Sikora, T.: Robust local optical flow for feature tracking. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1377–1387 (2012)

    Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 6(2), 91–110 (2004)

    Google Scholar 

  9. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium (2011)

    Google Scholar 

  10. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: International Conference on Computer Vision (2013)

    Google Scholar 

  11. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Google Scholar 

  12. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Locally affine sparse-to-dense matching for motion and occlusion estimation. In: IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  13. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)

    Google Scholar 

  14. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. Trans. Pattern Anal. Mach. Intell 34(9), 1744–1757 (2012)

    Google Scholar 

  15. Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.: A fully-connected layered model of foreground and background flow. In: Computer Vision and Pattern Recognition (CVPR) (2013)

    Google Scholar 

  16. Sun, D., Sudderth, E., Black, M.: Layered segmentation and optical flow estimation over time, In: Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  17. Zweig, S., Wolf, L.: InterpoNet, a brain inspired neural network for optical flow dense interpolation. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Zhang, C., Ge, L., Chen, Z., Li, M., Liu, W., Chen, H.: Refined TV-L1 optical flow estimation using joint filtering. IEEE Trans. Multimedia 22(2) (2020)

    Google Scholar 

  19. Watroba, R., Sebyleau, Y., Spampinato, G., Motshagen, D.: Self-contained, distributed automotive Ethernet camera system. In: International Conference and Exhibition for Automotive Electronic Systems (CESA) (2016)

    Google Scholar 

  20. Spampinato, G., Bruna, A., D’Alto, V., Curti, S.: Advanced low cost clustering system. In: International Conference on Image Processing Theory, Tools and Applications (IPTA) (2016)

    Google Scholar 

  21. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  22. Coppi, D., Calderara, S., Cucchiara, R.: Transductive people tracking in unconstrained surveillance. IEEE . Circuits Syst. Video Technol. 26(4), 762–775 (2016). https://doi.org/10.1109/TCSVT.2015.2416555

    Article  Google Scholar 

  23. Balisavira, V., Pandey, V.K.: Real-time object detection by road plane segmentation technique for ADAS. In: Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS) (2012)

    Google Scholar 

  24. Seenouvong, N., Watchareeruetai, U., Nuthong, C., Khongsomboon, K., Ohnish, N.: A computer vision based vehicle detection and counting system. In: Eighth International Conference on Knowledge and Smart Technology (KST) (2016)

    Google Scholar 

  25. Kalogeiton, V., Ferrari, V., Schmid, C.: Analysing domain shift factors between videos and images for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2327–2334 (2016). https://doi.org/10.1109/TPAMI.2016.2551239

    Article  Google Scholar 

  26. García‐Martín, A., Martínez, J.M.: People detection in surveillance: classification and evaluation. IET Comput. Vis. 9(5), 779–788 (2015). https://doi.org/10.1049/iet-cvi.2014.0148

  27. Ozcan, K., Velipasalar, S.: Wearable camera- and accelerometer-based fall detection on portable devices. IEEE Embedded Syst. Lett. 8(1), 6–9 (2016). https://doi.org/10.1109/LES.2015.2487241

    Article  Google Scholar 

  28. Dang, X., Wang, W., Wang, K., Dong, M., Yin, L.: A user-independent sensor gesture interface for embedded device. IEEE Sensors (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Buemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buemi, A., Spampinato, G., Bruna, A., D’Alto, V. (2022). Densification of Sparse Optical Flow Using Edges Information. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics