Skip to main content

Cycle Consistency Based Method for Learning Disentangled Representation for Stochastic Video Prediction

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13233))

Included in the following conference series:

  • 1227 Accesses

Abstract

Video frame prediction is an interesting computer vision problem of predicting the future frames of a video sequence from a given set of context frames. Video prediction models have found wide-scale perspective applications in autonomous navigation, representation learning, and healthcare. However, predicting future frames is challenging due to the high dimensional and stochastic nature of video data. This work proposes a novel cycle consistency loss to disentangle video representation into a low dimensional time-dependent pose and time-independent content latent factors in two different VAE based video prediction models. The key motivation behind cycle consistency loss is that future frame predictions are more plausible and realistic if they reconstruct the previous frames. The proposed cycle consistency loss is also generic because it can be applied to other VAE-based stochastic video prediction architectures with slight architectural modifications. We validate our disentanglement hypothesis and the quality of long-range predictions on standard synthetic and challenging real-world datasets such as Stochastic Moving MNIST and BAIR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bubić, A., Cramon, D., Schubotz, R.: Prediction, cognition and the brain. Front. Hum. Neurosci. 4, 25 (2010)

    Google Scholar 

  2. Lan, T., Chen, T.-C., Savarese, S.: A hierarchical representation for future action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 689–704. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_45

  3. Soran, B., Farhadi, A., Shapiro, L.: Generating notifications for missing actions: don’t forget to turn the lights off! In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4669–4677 (2015)

    Google Scholar 

  4. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. arXiv:1511.05440 (2015)

  5. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMS. In: International Conference on Machine Learning, pp. 843–852 (2015)

    Google Scholar 

  6. Xue, T., Wu, J., Bouman, K., Freeman, B.: Visual dynamics: probabilistic future frame synthesis via cross convolutional networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2016)

    Google Scholar 

  7. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: Advances in Neural Information Processing Systems, pp. 64–72 (2016)

    Google Scholar 

  8. Paxton, C., Barnoy, Y., Katyal, K., Arora, R., Hager, G.D.: Visual robot task planning. arXiv:1804.00062 (2018)

  9. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. arXiv:1706.08033 (2017)

  10. Hsieh, J.-T., Liu, B., Huang, D.-A., Fei-Fei, L.F., Niebles, J.C.: Learning to decompose and disentangle representations for video prediction. In: Advances in Neural Information Processing Systems, pp. 517–526 (2018)

    Google Scholar 

  11. Denton, E.L., et al.: Unsupervised learning of disentangled representations from video. In: Advances in Neural Information Processing Systems, pp. 4414–4423 (2017)

    Google Scholar 

  12. Lee, A.X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., Levine, S.: Stochastic adversarial video prediction. arXiv:1804.01523 (2018)

  13. Denton, E., Fergus, R.: Stochastic video generation with a learned prior. arXiv:1802.07687 (2018)

  14. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. arXiv:1710.11252 (2017)

  15. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv:1412.6604 (2014)

  16. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, pp. 613–621 (2016)

    Google Scholar 

  17. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning. arXiv:1605.08104 (2016)

  18. Chiappa, S., Racaniere, S., Wierstra, D., Mohamed, S.: Recurrent environment simulators. arXiv:1704.02254 (2017)

  19. Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.: Action-conditional video prediction using deep networks in atari games. In: Advances in Neural Information Processing Systems, pp. 2863–2871 (2015)

    Google Scholar 

  20. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Advances in Neural Information Processing Systems, pp. 667–675 (2016)

    Google Scholar 

  21. Liu, W., Sharma, A., Camps, O., Sznaier, M.: Dyan: a dynamical atoms-based network for video prediction. In: European Conference on Computer Vision, pp. 175–191. Springer (2018)

    Google Scholar 

  22. Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2443–2451 (2015)

    Google Scholar 

  23. Henaff, M., Zhao, J., LeCun, Y.: Prediction under uncertainty with error-encoding networks. arXiv:1711.04994 (2017)

  24. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)

  25. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  26. Zhou, Y., Berg, T.L.: Learning temporal transformations from time-lapse videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 262–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_16

  27. Kalchbrenner, N., et al.: Video pixel networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR.org, pp. 1771–1779 (2017)

    Google Scholar 

  28. Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: PixelCNN++: improving the pixelCNN with discretized logistic mixture likelihood and other modifications. arXiv:1701.05517 (2017)

  29. Reed, S., et al.: Parallel multiscale autoregressive density estimation. arXiv:1703.03664 (2017)

  30. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

  31. Ebert, F., Finn. C., Lee, A.X., Levine, S.: Self-supervised visual planning with temporal skip connections. arXiv:1710.05268 (2017)

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwari, U., Sreekar, P.A., Namboodiri, A. (2022). Cycle Consistency Based Method for Learning Disentangled Representation for Stochastic Video Prediction. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics