Abstract
In this work, we propose a new parallel fuzzy deep belief neural network for sentiment analysis. We have applied several preprocessing tasks to enhance data quality and remove noisy data. Then, we have applied a semi-automatic data labeling over the dataset by combining two techniques: Vader lexicon and Mamdani’s fuzzy system. In addition, we have used four extraction techniques, which are: TFIDF (Unigram), TFIDF (Bigram), TFIDF (Trigram) and GloVe in order to represent each tweet by numerical vector. Further, we have implemented three feature selection techniques which are: The mutual information approach, the chi-square method and the ANOVA technique. Finally, we have applied the deep belief network as classifier in order to classify each tweet into a neutral, negative or positive and our hybrid parallel deep-fuzzy belief neural network is deployed in a parallel design employing the Hadoop framework to overcome the issue of long runtime of huge data sets. Also, a comparisons of the proposed model’s effectiveness with other existing models in the literature is carried out and the experimental results shown that our suggested parallel fuzzy model surpasses the baseline models by a considerable margin in terms of recall, runtime, F1 score, accuracy, error rate and precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Es-sabery, F., Es-sabery, K., Hair, A.: A MapReduce improved ID3 decision tree for classifying twitter data. In: Fakir, M., Baslam, M., El Ayachi, R. (eds.) CBI 2021. LNBIP, vol. 416, pp. 160–182. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76508-8_13
Es-sabery, F., Es-sabery, K., Garmani, H., Hair, A.: Sentiment analysis of Covid19 tweets using a MapReduce fuzzified hybrid classifier based on C4.5 decision tree and convolutional neural network. E3S Web Conf. 297, 01052 (2021). https://doi.org/10.1051/e3sconf/202129701052
Es-Sabery, F., Hair, A., Qadir, J., Sainz-De-Abajo, B., García-Zapirain, B., Torre-Díez, I.D.L.: Sentence-level classification using parallel fuzzy deep learning classifier. IEEE Access 9, 17943–17985 (2021). https://doi.org/10.1109/ACCESS.2021.3053917
Naseem, U., Razzak, I., Musial, K., Imran, M.: Transformer based deep intelligent contextual embedding for twitter sentiment analysis. Futur. Gener. Comput. Syst. 113, 58–69 (2020). https://doi.org/10.1016/j.future.2020.06.050
Carvalho, J., Plastino, A.: On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis. Artif. Intell. Rev. 54(3), 1887–1936 (2020). https://doi.org/10.1007/s10462-020-09895-6
Yi, S., Liu, X.: Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’ review. Complex Intell. Syst. 6(3), 621–634 (2020). https://doi.org/10.1007/s40747-020-00155-2
Botchway, R.K., Jibril, A.B., Oplatková, Z.K., Chovancová, M.: Deductions from a Sub-Saharan African bank’s tweets: a sentiment analysis approach. Cogent Econ. Finance 8, 1776006 (2020). https://doi.org/10.1080/23322039.2020.1776006
Hubert, R.B., Estevez, E., Maguitman, A., Janowski, T.: Analyzing and visualizing government-citizen interactions on twitter to support public policy-making. Digit. Gov.: Res. Pract. 1, 15:1–15:20 (2020). https://doi.org/10.1145/3360001
Es-Sabery, F., et al.: A MapReduce opinion mining for COVID-19-related tweets classification using enhanced ID3 decision tree classifier. IEEE Access 9, 58706–58739 (2021). https://doi.org/10.1109/ACCESS.2021.3073215
Sarlan, A., Nadam, C., Basri, S.: Twitter sentiment analysis. In: Proceedings of the 6th International Conference on Information Technology and Multimedia, pp. 212–216 (2014). https://doi.org/10.1109/ICIMU.2014.7066632
Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inf. Fusion 42, 146–157 (2018). https://doi.org/10.1016/j.inffus.2017.10.006
Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., Aram, F.: State of the art survey of deep learning and machine learning models for smart cities and urban sustainability. In: Várkonyi-Kóczy, A.R. (ed.) INTER-ACADEMIA 2019. LNNS, vol. 101, pp. 228–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36841-8_22
Chen, T., Xu, R., He, Y., Wang, X.: Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Syst. Appl. 72, 221–230 (2017). https://doi.org/10.1016/j.eswa.2016.10.065
Alayba, A.M., Palade, V., England, M., Iqbal, R.: A combined CNN and LSTM model for Arabic sentiment analysis. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 179–191. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_12
Basiri, M.E., Nemati, S., Abdar, M., Cambria, E., Acharya, U.R.: ABCDM: an attention-based bidirectional CNN-RNN deep model for sentiment analysis. Futur. Gener. Comput. Syst. 115, 279–294 (2021). https://doi.org/10.1016/j.future.2020.08.005
Liao, S., Wang, J., Yu, R., Sato, K., Cheng, Z.: CNN for situations understanding based on sentiment analysis of twitter data. Procedia Comput. Sci. 111, 376–381 (2017). https://doi.org/10.1016/j.procs.2017.06.037
Vo, Q.-H., Nguyen, H.-T., Le, B., Nguyen, M.-L.: Multi-channel LSTM-CNN model for Vietnamese sentiment analysis. In: 2017 9th International Conference on Knowledge and Systems Engineering (KSE), pp. 24–29 (2017). https://doi.org/10.1109/KSE.2017.8119429
de Oliveira, D.N., Merschmann, L.H.C.: Joint evaluation of preprocessing tasks with classifiers for sentiment analysis in Brazilian Portuguese language. Multimedia Tools Appl. 80(10), 15391–15412 (2021). https://doi.org/10.1007/s11042-020-10323-8
Chintalapudi, N., Battineni, G., Canio, M.D., Sagaro, G.G., Amenta, F.: Text mining with sentiment analysis on seafarers’ medical documents. Int. J. Inf. Manag. Data Insights 1, 100005 (2021). https://doi.org/10.1016/j.jjimei.2020.100005
Aljuaid, H., Iftikhar, R., Ahmad, S., Asif, M., Tanvir Afzal, M.: Important citation identification using sentiment analysis of in-text citations. Telemat. Inform. 56, 101492 (2021). https://doi.org/10.1016/j.tele.2020.101492
Soni, V.K., Pawar, S.: Emotion based social media text classification using optimized improved ID3 classifier. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, pp. 1500–1505 (2017). https://doi.org/10.1109/ICECDS.2017.8389696
Ngoc, P.V., Ngoc, C.V.T., Ngoc, T.V.T., Duy, D.N.: A C4.5 algorithm for English emotional classification. Evol. Syst. 10(3), 425–451 (2017). https://doi.org/10.1007/s12530-017-9180-1
Lakshmi Devi, B., Varaswathi Bai, V., Ramasubbareddy, S., Govinda, K.: Sentiment analysis on movie reviews. In: Venkata Krishna, P., Obaidat, M.S. (eds.) Emerging Research in Data Engineering Systems and Computer Communications. AISC, vol. 1054, pp. 321–328. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0135-7_31
Guerreiro, J., Rita, P.: How to predict explicit recommendations in online reviews using text mining and sentiment analysis. J. Hosp. Tour. Manag. 43, 269–272 (2020). https://doi.org/10.1016/j.jhtm.2019.07.001
Mehta, R.P., Sanghvi, M.A., Shah, D.K., Singh, A.: Sentiment analysis of tweets using supervised learning algorithms. In: Luhach, A.K., Kosa, J.A., Poonia, R.C., Gao, X.-Z., Singh, D. (eds.) First International Conference on Sustainable Technologies for Computational Intelligence. AISC, vol. 1045, pp. 323–338. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0029-9_26
Zhang, J.: Sentiment analysis of movie reviews in Chinese. Uppsala University (2020). https://www.diva-portal.org/smash/get/diva2:1438431/FULLTEXT01.pdf
López-Chau, A., Valle-Cruz, D., Sandoval-Almazán, R.: Sentiment analysis of twitter data through machine learning techniques. In: Ramachandran, M., Mahmood, Z. (eds.) Software Engineering in the Era of Cloud Computing. CCN, pp. 185–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33624-0_8
Addi, H.A., Ezzahir, R., Mahmoudi, A.: Three-level binary tree structure for sentiment classification in Arabic text. In: Proceedings of the 3rd International Conference on Networking, Information Systems & Security (NISS2020), Marrakech, Morocco, pp. 1–8 (2020). https://doi.org/10.1145/3386723.3387844
Patel, R., Passi, K.: Sentiment analysis on twitter data of world cup soccer tournament using machine learning. IoT 1(2), 218–239 (2020). https://doi.org/10.3390/iot1020014
Wang, Y., Chen, Q., Shen, J., Hou, B., Ahmed, M., Li, Z.: Aspect-level sentiment analysis based on gradual machine learning. Knowl. Based Syst. 212, 106509–106521 (2021). https://doi.org/10.1016/j.knosys.2020.106509
Es-sabery, F., Hair, A.: A MapReduce C4.5 decision tree algorithm based on fuzzy rule-based system. Fuzzy Inf. Eng. 1–28 (2020). https://doi.org/10.1080/16168658.2020.1756099
Es-Sabery, F., Hair, A.: Big data solutions proposed for cluster computing systems challenges: a survey. In: Proceedings of the 3rd International Conference on Networking, Information Systems & Security, Marrakech, Morocco, pp. 1–7 (2020). https://doi.org/10.1145/3386723.3387826
Hamzi, B., Owhadi, H.: Learning dynamical systems from data: a simple cross-validation perspective, part I: parametric kernel flows. Physica D Nonlinear Phenom. 421 (2021). https://doi.org/10.1016/j.physd.2020.132817
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Es-sabery, F., Es-sabery, K., El Akraoui, B., Hair, A. (2022). Optimization Focused on Parallel Fuzzy Deep Belief Neural Network for Opinion Mining. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2022. Lecture Notes in Business Information Processing, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-06458-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-06458-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06457-9
Online ISBN: 978-3-031-06458-6
eBook Packages: Computer ScienceComputer Science (R0)