Skip to main content

Analysis of Decision Tree Algorithms for Diabetes Prediction

  • Conference paper
  • First Online:
Business Intelligence (CBI 2022)

Abstract

Data Mining (DM) is a helpful tool to extract and exploit the information from a large data set. There are different methods and algorithms available in data mining field. Several DM algorithms are used for classification such as Artificial Neural Network (ANN), K-Nearest Neighbor (K-NN), etc. The Decision Tree (DT) mining remains the best algorithm. In this paper, different classification methods including decision tree, C-RT, C5.0, AD-Tree and CS-MC4 algorithms are presented. These algorithms are evaluated using Recall, precision and F-measure. Experimental results show that AD-Tree is faster and present higher accuracy than the other classifier using a Diabetes data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matuszewski, W., et al.: Prevalence of Diabetic Retinopathy in Type 1 and Type 2 Diabetes Mellitus Patients in North-East Poland. Medecina (2020)

    Google Scholar 

  2. Roy, M.S., et al.: The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch. Ophthalmol. 122 (2004). (©2004 American Medical Association)

    Google Scholar 

  3. Wang, S.Y., Andrews, C.A., Herman, W.H., Gardner, T.W., Stein, J.D.: Incidence and Risk Factors for Developing Diabetic Retinopathy among Youths with Type 1 or Type 2 Diabetes throughout the United States, American society of ophthalmology (2017) https://doi.org/10.1016/j.ophtha.2016.10.031

  4. Fiarni, C., Sipayung, E.M., Maemunah, S.: Analysis and prediction of diabetes complication disease using data mining algorithm. In: The Fifth Information Systems International Conference 2019, Science Direct. Procedia Computer Science, vol. 161, pp. 449–457 (2019)

    Google Scholar 

  5. Gárate-Escamila, A..K.., Hassani, A..H..E.., Andrès, E..: Classification models for heart disease prediction using feature selection and PCA. Inf. Med. Unlock. 19, 100330 (2020). https://doi.org/10.1016/j.imu.2020.100330

    Article  Google Scholar 

  6. Mujumdar, A., Vaidehi, V.: Diabetes prediction using machine learning algorithms. In: International Conference on Recent Trends in Advanced Computing 2019, ICRTAC 2019 (2019)

    Google Scholar 

  7. Ghosh, P., Azam, A., Karim, A., Hassan, M., Roy, K., Jonkman, M.: A comparative study of different machine learning tools in detecting diabetes. 25th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems. Procedia Comput. Sci. 192, 467–477 (2021)

    Google Scholar 

  8. Viloria, A., Herazo-Beltran, Y., Cabrera, D., Pineda, O.B.: Diabetes diagnostic prediction using vector support machines. In: The 11th International Conference on Ambient Systems, Networks and Technologies (ANT), 6–9 April 2020, Warsaw, Poland (2020)

    Google Scholar 

  9. Zhang, X., Xiao, H., Gao, R., Zhang, H., Wang, Y.: K-nearest neighbors rule combining prototype selection and local feature weighting for classification. Knowl. Based Syst. 243 (2022)

    Google Scholar 

  10. Patel, B.R., Rana, K.K.: A survey on decision tree algorithm for classification. Int. J. Eng. Dev. Res. 2(1) (2014)

    Google Scholar 

  11. Sisodia, D., Sisdia, D.S.: Prediction of diabetes using classification algorithms. In: International Conference on Computational Intelligence and Data Sciences (ICCIDS), Science Direct Procedia Computer Science, vol. 132, pp. 1578–1585 (2018)

    Google Scholar 

  12. Harz, H.H., Rafi, A.O., Hijazi, M.O., Abu-Naser, S.S.: Artifical neural network for diabetes using JNN. Int. J. Acad. Eng. Res. 4(10), 14–22 (2020)

    Google Scholar 

  13. Liu, J., Tang, Z.H., Zeng, F., Li, Z., Zhou, L.: Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population. BMC Med. Inf. Dec. Mak. 13(1) (2013). https://doi.org/10.1186/1472-6947-13-80

  14. Pradhan, N., Rani, G., Dhaka, V.S., Poonia, R.C.: Diabetes prediction using artificial neural network. Deep Learn. Tech. Biomed. Health Inf. 121, 327–339 (2020). https://doi.org/10.1016/B978-0-12-819061-6.00014-8

    Article  Google Scholar 

  15. Temurtas, H., Yumusak, N., Temurtas, F.: A comparative study on diabetes disease diagnosis using neural networks. Expert Syst. Appl. 36(4), 8610–8615 (2009). https://doi.org/10.1016/j.eswa.2008.10.032

  16. Sharma, A.K., Sahni, S.: A comparative study of classification algorithms for spam email data analysis. Int. J. Comput. Sci. Eng. 3(5), 1890–1895 (2011)

    Google Scholar 

  17. Nemae, D.R., Gupa, R.K.: Diabetes prediction using BPSO and decision tree classifier. In: 2nd International Conference on Data, Engineering and Applications (IDEA), IEEE Xplore 2020 (2020)

    Google Scholar 

  18. Nancy, P., Ramani, R.G., Jacob, S.G.: Discovery of gender classification rules for social network data using data mining algorithms. In: Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research (ICCIC 2011); Kanyakumari, India (2011)

    Google Scholar 

  19. Yuvaraj, N., Chang, V., Pinagapani, A., Kannan, S., Dhiman, G., Rajan, A.R.: Automatic detection of cyberbullying using multi-feature based artificial intelligence with deep decision tree classification, Elsevier. Comput. Electric. Eng. 92 (2021)

    Google Scholar 

  20. Kumar, B.M., Perumal, R.S., Nadesh, R.K., Arivuselvan, K.: Type 2: diabetes mellitus prediction using Deep Neural Networks classifier. Int. J. Cogn. Comput. Eng. 1, 55–61 (2020)

    Google Scholar 

  21. Strzelecka, A., Zawadzka, D.: Application of classification and regression tree (CRT) analysis to identify the agricultural households at risk of financial exclusion. Procedia Comput. Sci. 192, 4532–4541 (2021)

    Google Scholar 

  22. Sharma, S., Agrawal, J., Sharma, S.: Classification through Machine Learning Technique: C4.5 Algorithm based on Various Entropies No 16 (2013)

    Google Scholar 

  23. Domingos, P.: MetaCost: a general method for making classifiers cost-sensitive. In: Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, pp. 155–164. ACM Press, San Diego, CA (1999)

    Google Scholar 

  24. Chawla, N.V., Japkowicz, N., Kolcz, A. (eds.) Special Issue on Learning from Imbalanced Datasets. SIGKDD, vol. 6, issue 1. ACM Press (2004)

    Google Scholar 

  25. Zubek, V.B., Dietterich, T.: Pruning improves heuristic search for cost-sensitive learning. In: Proceedings of the Nineteenth International Conference of Machine Learning, pp. 27–35, Morgan Kaufmann, Sydney, Australia (2002)

    Google Scholar 

  26. Madadipouya, K.: A new decision tree method for data mining in medicine. Adv. Comput. Intell. Int. J. 2(3) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Fakir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fakir, Y., Abdelmotalib, N. (2022). Analysis of Decision Tree Algorithms for Diabetes Prediction. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2022. Lecture Notes in Business Information Processing, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-06458-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06458-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06457-9

  • Online ISBN: 978-3-031-06458-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics