Skip to main content

Intelligent System Based on GAN Model for Decision Support in Brain Tumor Segmentation

  • Conference paper
  • First Online:
Business Intelligence (CBI 2022)

Abstract

The most prevalent malignant brain tumors are gliomas, with a variety of grades, and each grade has a significant impact on a patient's chances of survival. Low-grade gliomas are usually found in the human brain and spinal cord. Low-grade glioma may be accurately diagnosed and detected early, lowering the risk of mortality for patients. In the examination gliomas of low grade, segmentation of MRI images is critical. The result, manual of Segmentation Techniques takes a long time and require a lot of pathology knowledge. in our study, we provide a unique generative adversarial network-based approach for segmenting images of tumors in the brain. The network is a structure between two neurons the generator and the discriminator. The generator is taught to construct an input mask of a take original image, The discriminator can tell the difference between the original and created masks, the end goal is to create masks for the input. The suggested model achieves a dice result of 0.97 in generalized experimental results from the TCGA LGG dataset, with a loss coefficient of 0.030, which is more effective and efficient than the compared approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. (2014). https://doi.org/10.1016/j.neunet.2014.09.003

  2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Anantharaman, R., Velazquez, W., Lee, Y.: Utilizing mask R-CNN for detection and segmentation of oral diseases. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2197–2204 (2018). https://doi.org/10.1109/BIBM.2018.8621112

  6. Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)

    Article  Google Scholar 

  7. Xue, Y., Xu, T., Zhang, H., et al.: SegAN: Adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinform 16, 383–392 (2018)

    Article  Google Scholar 

  8. Dai, W., Dong, N., Wang, Z., Liang, X., Zhang, H., Xing, E.P.: SCAN: structure correcting adversarial network for organ segmentation in chest X-rays. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 263–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_30

  9. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Google Scholar 

  10. Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 507–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_58

    Chapter  Google Scholar 

  11. Munawar, F., Azmat, S., Iqbal, T., Grönlund, C., Ali, H.: Segmentation of Lungs in Chest X-Ray Image Using Generative Adversarial Networks (2020)

    Google Scholar 

  12. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule receiver operating characteristic analysis of Radiologists’ detection of pulmonary nodules. Amer. J. Roentgenol. 174(1), 71–74 (2000)

    Google Scholar 

  13. Chen, H., Qin, Z., Ding, Y., Lan, T.: Brain tumor segmentation with generative adversarial nets. In: 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 301–305 (2019). https://doi.org/10.1109/ICAIBD.2019.8836968

  14. Goodfellow, J., et al.: Generative Adversarial Networks. arXiv:1406.2661 [stat.ML] (2014)

  15. Goodfellow, P., Mirza, M., Xu, B., Warde-Farley D., Ozair, S., Bengio, Y.: Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  16. https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG

  17. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing Systems, vol. 25 (2012). https://doi.org/10.1145/3065386

  18. Myronenko, A.: 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 311–320 (2018)

    Google Scholar 

  19. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)

    Article  Google Scholar 

  20. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Article  Google Scholar 

  21. El Mansouri, O., El Mourabit, Y., El Habouz, Y.: System segmentation of Lungs in images chest X-ray using the generative adversarial network. In: ITM Web of Conferences, vol. 43, p. 01020 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar El Mansouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Mansouri, O., El Mourabit, Y., El Habouz, Y., Boujemaa, N., Ouriha, M. (2022). Intelligent System Based on GAN Model for Decision Support in Brain Tumor Segmentation. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2022. Lecture Notes in Business Information Processing, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-06458-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06458-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06457-9

  • Online ISBN: 978-3-031-06458-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics