Skip to main content

Dimensionality Reduction of MI-EEG Data via Convolutional Autoencoders with a Low Size Dataset

  • Conference paper
  • First Online:
Business Intelligence (CBI 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 449))

Included in the following conference series:

Abstract

Electroencephalography has a poor spatial resolution, as experimental setups demand many electrodes around the motor cortex to reach the best results. Yet, it increases the data to be stored or transmitted in real-time for later uses. Thus, researchers have suggested autoencoders (AE) that transmit the compressed latent variable instead of the data itself. In this paper, we propose an AE and a Supervised Autoencoder (SupAE) designed for mobile applications treating Motor Imagery (MI). The introduced Encoder and Decoder derive from the previously published AMSI-EEGNet, a fast-to-train and lightweight architecture. The results found that the proposed methods perform better than baselines, especially for a high compression ratio (CR). Also, SupAE is a better option when the transmitted data needs classification. Further, we studied the evolution of the AE training and found that it learns similar features to previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amin, S.U., Alsulaiman, M., Muhammad, G., Mekhtiche, M.A., Shamim Hossain, M.: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Fut. Gene. Comput. Syst. 101, 542–554 (2019). https://doi.org/10.1016/j.future.2019.06.027

    Article  Google Scholar 

  2. Ben Said, A., Mohamed, A., Elfouly, T.: Deep learning approach for EEG compression in mHealth system. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1508–1512. IEEE, Valencia, Spain, June 2017. https://doi.org/10.1109/IWCMC.2017.7986507

  3. Cao, Y., Zhang, H., Choi, Y.B., Wang, H., Xiao, S.: Hybrid deep learning model assisted data compression and classification for efficient data delivery in mobile health applications. IEEE Access 8, 94757–94766 (2020). https://doi.org/10.1109/ACCESS.2020.2995442

    Article  Google Scholar 

  4. Clerc, M., Bougrain, L., Lotte, F. (eds.): Brain-Computer Interfaces 1: Foundations and Methods. Cognitive Science Series, ISTE; Wiley, London (2016)

    Google Scholar 

  5. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016)

    Google Scholar 

  6. Dao, P.T., Li, X.J., Do, H.N.: Lossy compression techniques for EEG signals. In: 2015 International Conference on Advanced Technologies for Communications (ATC), pp. 154–159 (2015). https://doi.org/10.1109/ATC.2015.7388309

  7. Ditthapron, A., Banluesombatkul, N., Ketrat, S., Chuangsuwanich, E., Wilaiprasitporn, T.: Universal joint feature extraction for P300 EEG classification using multi-task autoencoder. IEEE Access 7, 68415–68428 (2019). https://doi.org/10.1109/ACCESS.2019.2919143

    Article  Google Scholar 

  8. Farwell, L., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988). https://doi.org/10.1016/0013-4694(88)90149-6

    Article  Google Scholar 

  9. Gogna, A., Majumdar, A., Ward, R.: Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals. IEEE Trans. Biomed. Eng. 64(9), 2196–2205 (2017). https://doi.org/10.1109/TBME.2016.2631620

    Article  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Hosseini, M.P., Soltanian-Zadeh, H., Elisevich, K., Pompili, D.: Cloud-based deep learning of Big EEG data for epileptic seizure prediction. arXiv:1702.05192 [cs, stat], February 2017

  12. Kaya, M., Binli, M.K., Ozbay, E., Yanar, H., Mishchenko, Y.: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci. Data 5, 180211 (2018). https://doi.org/10.1038/sdata.2018.211

  13. Lawhern, V.J., et al.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018). https://doi.org/10.1088/1741-2552/aace8c

  14. Le, L., Patterson, A., White, M.: Supervised autoencoders: improving generalization performance with unsupervised regularizers. In: 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada, p. 11 (2018)

    Google Scholar 

  15. Le, L., Patterson, A., White, M.: Supervised autoencoders: improving generalization performance with unsupervised regularizers. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  17. Liao, L.D., et al.: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. NeuroEng. Rehabi. 9(1), 5 (2012). https://doi.org/10.1186/1743-0003-9-5

  18. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML,vol. 30, p. 3. Citeseer (2013)

    Google Scholar 

  19. Nguyen, B., Ma, W., Tran, D.: A study of combined lossy compression and seizure detection on epileptic EEG signals. Procedia Comput. Sci. 126, 156–165 (2018). https://doi.org/10.1016/j.procs.2018.07.219

    Article  Google Scholar 

  20. Nguyen, B.T.: EEG Lossy compression and its impact on EEG-based Pattern Recognition. Ph.D. thesis, University of Canberra

    Google Scholar 

  21. Pandey, S.K., Janghel, R.R.: Recent deep learning techniques, challenges and its applications for medical healthcare system: a review. Neural Process. Lett. 50(2), 1907–1935 (2019). https://doi.org/10.1007/s11063-018-09976-2

  22. Pfurtscheller, G., Brunner, C., Schlögl, A., da Silva], F.L.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006). https://doi.org/10.1016/j.neuroimage.2005.12.003

  23. Riyad, M., Khalil, M., Adib, A.: A novel multi-scale convolutional neural network for motor imagery classification. Biomed. Signal Process. Control 68, 102747 (2021). https://doi.org/10.1016/j.bspc.2021.102747

  24. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization: convolutional neural networks in EEG analysis. Hum. Brain Mapp. 38(11), 5391–5420 (2017). https://doi.org/10.1002/hbm.23730

  25. Sudhakar, M.S., Titus, G.: Computational mechanisms for exploiting temporal redundancies supporting multichannel EEG compression. In: Paul, S. (ed.) Application of Biomedical Engineering in Neuroscience, pp. 245–268. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7142-4_12

  26. Teplan, M., et al.: Fundamentals of EEG measurement. Measure. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  27. Titus, G., Sudhakar, M.S.: A simple and efficient algorithm operating with linear time for MCEEG data compression. Austral. Phys. Eng. Sci. Med. 40(3), 759–768 (2017). https://doi.org/10.1007/s13246-017-0575-x

  28. Wu, D., Shi, Y., Wang, Z., Yang, J., Sawan, M.: C\(^{2}\)SP-Net: joint compression and classification network for epilepsy seizure prediction. arXiv:2110.13674 [cs], October 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Riyad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riyad, M., Khalil, M., Adib, A. (2022). Dimensionality Reduction of MI-EEG Data via Convolutional Autoencoders with a Low Size Dataset. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2022. Lecture Notes in Business Information Processing, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-06458-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06458-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06457-9

  • Online ISBN: 978-3-031-06458-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics