Skip to main content

Landslide Prediction with Machine Learning and Time Windows

  • Conference paper
  • First Online:
Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence (IWINAC 2022)

Abstract

Landslides are among the most destructive natural events, being their prediction necessary to prevent damage to people and infrastructure. This is a problem traditionally addressed with conventional methods, of a deterministic nature, with a limited number of variables and a static treatment of them. In this paper, we propose an approach based on Machine Learning, which has proven to be a successful alternative for dealing with geo-environmental problems. A feature engineering process allowed us to determine the most influential geological, geo-morphological and meteorological factors in the occurrence of landslides. These variables together with the landslide inventory, form a dataset to train different machine learning models, whose evaluation and comparison showed the best performance of the multi-layer perceptron with an accuracy of 99.6%. Our contribution consists of treating precipitation dynamically with the use of time windows for different periods. In addition, we determined the ranges of values of the conditioning factors that combined would trigger a landslide for each time window. Both the multi-temporal prediction and the thresholds of the conditioning factors provide technical support for decision making in risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achour, Y., Pourghasemi, H.: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci. Front. 11 (2019). https://doi.org/10.1016/j.gsf.2019.10.001

  2. Mora, R., Vahrson, W., Mora, S.: Mapa de Amenaza de Deslizamientos, Valle Central, Costa Rica. In: Centro de Coordinación para la prevención de desastres naturales en América Central (CEPREDENAC) (1992)

    Google Scholar 

  3. Rajakumar, P., et al.: Landslide susceptibility mapping in a hilly terrain using remote sensing and GIS. J. Indian Soc. Remote Sens. 35 (2007). https://doi.org/10.1007/BF02991831

  4. Santos, D., Dallos, L., Gaona-García, P.A.: Algoritmos de rastreo de movimiento utilizando técnicas de inteligencia artificial y machine learning. Información tecnológica 31, 23–38 (2020)

    Google Scholar 

  5. Đurić, U., et al.: Machine learning based landslide assessment of the Belgrade metropolitan area: pixel resolution effects and a cross-scaling concept. Eng. Geol. 256, 23–38 (2019)

    Article  Google Scholar 

  6. Arabameri, A., et al.: Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sens. 12 (2020). https://doi.org/10.3390/rs12030475

  7. Di Napoli, M., Carotenuto, F., Cevasco, A., Confuorto, P., Di Martire, D., Firpo, M., Pepe, G., Raso, E., Calcaterra, D.: Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 17(8), 1897–1914 (2020). https://doi.org/10.1007/s10346-020-01392-9

    Article  Google Scholar 

  8. Saha, S., et al.: Machine learning-based gully erosion susceptibility mapping: a case study of Eastern India. Sensors 20(5), 1313 (2020)

    Google Scholar 

  9. Rodríguez, B.G., Salvador-Meneses, J., Garcia-Rodriguez, J.: Predicting landslides with machine learning methods using temporal sequences of meteorological data. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) SOCO 2021. AISC, vol. 1401, pp. 348–357. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87869-6_33

    Chapter  Google Scholar 

  10. Ba, Q., Chen, Y., Deng, S., Yang, J., Li, H.: A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment. Earth Sci. Inform. 11(3), 373–388 (2018). https://doi.org/10.1007/s12145-018-0335-9

    Article  Google Scholar 

  11. Pham, B.T., et al.: A novel ensemble classifier of rotation forest and Naive Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomat. Nat. Hazards Risk 8(2), 649–671 (2017)

    Google Scholar 

  12. Ali, S.A., et al.: GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci. Front. 12(2), 857–876 (2021)

    Google Scholar 

  13. Guzzetti, F., et al.: Landslide inventory maps: new tools for an old problem. Earth Sci. Rev. 112(1), 42–66 (2012). ISSN: 0012-8252. https://doi.org/10.1016/j.earscirev.2012.02.001. https://www.sciencedirect.com/science/article/pii/S0012825212000128

  14. Lu, P., et al.: Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Remote Sens. Environ. 231, 111235 (2019)

    Google Scholar 

  15. Merghadi, A., et al.: Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci. Rev. 207, 103225 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Salvador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrero-Rodriguez, B., Garcia-Rodriguez, J., Salvador, J., Mejia-Escobar, C., Bonifaz, M., Gallardo, O. (2022). Landslide Prediction with Machine Learning and Time Windows. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham. https://doi.org/10.1007/978-3-031-06527-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06527-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06526-2

  • Online ISBN: 978-3-031-06527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics