Skip to main content

Challenges of Future Smart and Secure IoT Networking

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2022)

Abstract

Upcoming future telecommunication networks will have to provide reliable, secure, and high-quality connectivity between highly diverse devices and a plurality of service and content provider domains, using ideally compatible inter-operable fixed and mobile converged access technologies. Today, the majority of actual communication requests and user applications is initiated by both, human beings via personal handheld devices, and a plethora of types of machines. This are smart devices as sensors, watches, household appliances etc., and setting up the so-called Internet of Things. The amount of the latter will increase. New device types will emerge steadily and may span up a new market very well comparable to that of traditional human-centric communication, especially in view of the current vision to meet challenges to mankind as climate change, endemic diseases, unequal distribution of wealth and health in a global scale by means of digitalization and Information and Communication Technology.

To enable ease of operation at affordable costs for secure automatic deployment, upgrade, and maintenance of IoT, new models are required also for bootstrapping, authenticating, and subsequently authorizing a device during network attachment procedure, even without demanding specific and potentially complex or error-prone customer activity.

This contribution evaluates typical use cases and describes the problem space including underlying key issues related to sensing technologies and intelligent data analysis, but also measures to improve, e.g., reliability and resilience. The concepts investigated by different standard developing organizations are reviewed, and a set of open challenges and research topics are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    URL: https://www.itu.int/en/mediacentre/backgrounders/Pages/connect-2030-agenda.aspx.

  2. 2.

    URL: https://www.gsma.com/betterfuture/wp-content/uploads/2021/04/Mobile-Net-Zero-State-of-the-Industry-on-Climate-Action.pdf.

  3. 3.

    URL: https://www.brunel.ac.uk/research/projects/system-for-monitoring-infants-in-low-resource-environments/.

  4. 4.

    URL: https://spritehub.org/2022/02/07/thridi-trust-in-home-rethinking-interface-design-in-iot/.

  5. 5.

    URL: https://docbox.etsi.org/Workshop/2019/201903_ITSWS/SESSION04/ERICSSON_MUEHLEISEN.pdf.

  6. 6.

    URL: https://wvsc.berlin/en/5g/.

  7. 7.

    The Things Network. URL: https://www.thethingsnetwork.org/.

  8. 8.

    URL: https://lora-alliance.org/.

  9. 9.

    URL: https://labs.ripe.net/author/kistel/ripe-atlas-probes-as-iot-devices/.

  10. 10.

    URL: https://www.itu.int/en/mediacentre/backgrounders/Pages/smart-sustainable-cities.aspx.

  11. 11.

    URL: https://www.itu.int/rec/T-REC-Y.4811-202111-I.

  12. 12.

    URL: https://www.3gpp.org/release18/.

  13. 13.

    ITU-T X.509. URL: https://www.itu.int/ITU-T/recommendations/rec.aspx?id=14033.

  14. 14.

    ISO/IEC 9594-8. URL: https://www.iso.org/standard/80325.html.

  15. 15.

    IEEE P802.11 – Task Group BF. URL: https://www.ieee802.org/11/Reports/tgbf_update.htm.

  16. 16.

    URL: https://www.ieee802.org/11/IEEE%20802-11-Overview-and-Amendments-Under-Development.pptx.

  17. 17.

    APRS spec version 1.01. URL: http://aprs.org/APRSdocs/protocol.txt

  18. 18.

    APRS map visualization. URL: https://aprs.fi/.

References

  1. Ono, T., Iida, K., Yamazaki, S.: Achieving sustainable development goals (SDGs) through ICT Services. FUJITSU Sci. Tech. J. 53, 6 (2017)

    Google Scholar 

  2. Federal Ministry of the Interior, Building and Community, Cyber Security Strategy for Germany 2021, Berlin, Germany (2021)

    Google Scholar 

  3. Mortier, R., Haddadi, H., Henderson, T., McAuley, D., Crowcroft, J.: Human-data interaction: the human face of the data-driven society (2014). https://doi.org/10.2139/ssrn.2508051

    Article  Google Scholar 

  4. von Hugo, D., Eichler, G., Rosowski, T.: A holistic communication network for efficient transport and enhanced driving via connected cars. In: Lüke, K.-H., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2019. CCIS, vol. 1041, pp. 11–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22482-0_2

    Chapter  Google Scholar 

  5. Zhang, Y., Love, D.J., Krogmeier, J.V., Anderson, C.R., Heath, R.W., Buckmaster, D.R.: Challenges and opportunities of future rural wireless communications. IEEE Commun. Mag. 59(12), 16–22 (2021)

    Article  Google Scholar 

  6. Lüke, K.-H., von Hugo, D., Eichler, G.: 5G network quality of service supporting adequate quality of experience for industrial demands in process automation. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2021. CCIS, vol. 1404, pp. 201–222. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75004-6_14

    Chapter  Google Scholar 

  7. NGIOT (Next Generation Internet of Things): IoT research, innovation and deployment priorities in the EU White Paper, D3.3 (2021)

    Google Scholar 

  8. Kolovou, L.: Building a Roadmap for Next Generation Internet of Things, Scoping Paper, NGIOT workshop October 2019 (2019)

    Google Scholar 

  9. Ylonen, T., Lonvick, C.: SSH Authentication Protocol, RFC 4252 (2006)

    Google Scholar 

  10. Kent, S., Seo, K.: Security Architecture for the Internet Protocol, RFC 4301 (2005)

    Google Scholar 

  11. ETSI TS 103 701 (V1.1.1): CYBER; Cybersecurity assessment for consumer IoT products (2021)

    Google Scholar 

  12. 3GPP TS 33.187: Security aspects of Machine-Type Communications (MTC) and other mobile data applications communications enhancements

    Google Scholar 

  13. 3GPP TR 33.861: Study on evolution of Cellular Internet of Things (CIoT) security for the 5G System

    Google Scholar 

  14. 3GPP TS 23.501: System architecture for the 5G System (5GS); Stage 2 (Release 17)

    Google Scholar 

  15. 3GPP TS 23.502: Procedures for the 5G system, Stage 2 (Release 17)

    Google Scholar 

  16. 3GPP TS 23.503: Policy and Charging Control Framework for the 5G System (Release 17)

    Google Scholar 

  17. 3GPP TS 33.501: Security architecture and procedures for 5G system

    Google Scholar 

  18. 3GPP TS 24.193: 5G System; Access Traffic Steering, Switching and Splitting (ATSSS); Stage 3

    Google Scholar 

  19. ETSI EN 303 645 (V2.1.1): CYBER; Cyber Security for Consumer Internet of Things: Baseline Requirements (2020)

    Google Scholar 

  20. IEEE, 802.1X-2020: Port Based Network Access Control. https://standards.ieee.org/ieee/802.1X/7345/ (2020)

  21. IEEE, Std. 802.11-2016. https://standards.ieee.org/findstds/standard/802.11-2016.html (2016)

  22. IEEE, P802.11 - Task Group BF (WLAN Sensing) 11-21/0504r2: Specification Framework for TGbf (2021)

    Google Scholar 

  23. IEEE, P802.11 - Task Group BF (WLAN Sensing) 11-20/1712r2: WiFi Sensing Use Cases (2021)

    Google Scholar 

  24. Peltonen, A., et al.: Enterprise security for the internet of things (IoT): lightweight bootstrapping with EAP-NOOB. Sensors 20, 6101 (2020). https://doi.org/10.3390/s20216101

    Article  Google Scholar 

  25. Aura, T., Sethi, M., Peltonen, A.: Nimble Out-of-Band Authentication for EAP (EAP-NOOB), RFC 9140 (2021)

    Google Scholar 

  26. Pritikin, M., Richardson, M., Eckert, T., Behringer, M., Watsen, K.: Bootstrapping Remote Secure Key Infrastructure, RFC 8995 (2021)

    Google Scholar 

  27. Richardson, M., Pan, W.: Operational Considerations for Voucher infrastructure for BRSKI MASA, draft-Richardson-anima-masa-considerations, work in progress (2021)

    Google Scholar 

  28. Richardson, M.: A taxonomy of operational security of manufacturer installed keys and trust anchors, draft-richardson-t2trg-idevid-considerations, work in progress (2022)

    Google Scholar 

  29. Richardson, M., Yang, J.: Operational considerations for BRSKI registrar, draft-richardson-anima-registrar-considerations-04, work in progress (2020)

    Google Scholar 

  30. Sethi, M., Sarikaya, B., Garcia-Carrillo, D.: Terminology and processes for initial security setup of IoT devices, draft-irtf-t2trg-secure-bootstrapping-01, work in progress (2021)

    Google Scholar 

  31. Sarikaya, B., von Hugo, D.: The need for new authentication methods for internet of things, draft-hsothers-iotsens-ps-01.txt, work in progress (2022)

    Google Scholar 

  32. ENISA, Methodology for Sectoral Cybersecurity Assessments - EU Cybersecurity Certification Framework (2021)

    Google Scholar 

  33. Chaudhry, S.A., Yahya, K., Al-Turjman, F., Yang, M.-H.: A secure and reliable device access control scheme for IoT based sensor cloud systems. IEEE Access 8 (2020). https://doi.org/10.1109/ACCESS.2020.3012121

  34. Ramesh, M.V., et al.: Achieving sustainability through smart city applications: protocols, systems and solutions using IoT and wireless sensor network. CSI Trans. ICT 8(2), 213–230 (2020). https://doi.org/10.1007/s40012-020-00285-5

    Article  Google Scholar 

  35. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (2016)

    Google Scholar 

  36. European Union Agency for Cybersecurity (ENISA): IoT Security Standards Gap Analysis - Mapping of existing standards against requirements on security and privacy in the area of IoT, V1.0 (2018), available at https://www.enisa.europa.eu/publications/iot-security-standards-gap-analysis. Accessed 09 March 2022

  37. ETSI TS 102 165-2 (V4.1.1) Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON) Release 4; Protocol Framework Definition; Methods and Protocols for Security; Part 2: Counter Measures (2003)

    Google Scholar 

  38. 3GPP TR 23.700-53: Study on access traffic steering, switching and splitting support in the 5G system architecture; Phase 3 (Release 18), work in progress

    Google Scholar 

  39. NIST, Advanced Encryption Standard (AES). https://www.nist.gov/publications/advanced-encryption-standard-aes (2001)

  40. IEEE 802.15 WPAN TG1 website. https://www.ieee802.org/15/pub/TG1.html. Accessed 09 March 2022

  41. IEEE: IEEE Standard for Low-Rate Wireless Networks. IEEE Standard 802.15.4-2015 (2016). https://doi.org/10.1109/IEEESTD.2016.7460875

  42. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: IPv6 over IEEE 802.15.4, RFC 4944 (2007)

    Google Scholar 

  43. Gomez, C., Crowcroft, J., Scharf, M.: TCP Usage Guidance in the Internet of Things (IoT), RFC 9006 (2021)

    Google Scholar 

  44. Gündoğan, C., Schmidt, T., Wählisch, M., Scherb, C., Marxer, C., Tschudin, C.: Information-Centric Networking (ICN) Adaptation to Low-Power Wireless Personal Area Networks (LoWPANs), RFC 9139 (2021)

    Google Scholar 

  45. Abosata, N., Al-Rubaye, S., Inalhan, G., Emmanouilidis, C.: Internet of things for system integrity: a comprehensive survey on security, attacks and countermeasures for industrial applications. Sensors 21, 3654 (2021). https://doi.org/10.3390/s21113654

    Article  Google Scholar 

  46. Ali, I., Sabir, S., Ullah, Z.: Internet of things security, device authentication and access control: a review. Int. J. Comput. Sci. Inf. Technol. Secur. (IJCSIS) 14(8) (2016)

    Google Scholar 

  47. Al-Qaness, M.A.A., et al.: Channel state information (CSI) from pure communication to sense and track human motion: a survey. Sensors 19(15) (2019). https://doi.org/10.3390/s19153329, PMID: 31362425 PMCID; PMC6696212

  48. Pahlavan, K., Krishnamurthy, P.: Evolution and impact of Wi-Fi technology and applications: a historical perspective. Int. J. Wireless Inf. Netw. 28(1), 3–19 (2020). https://doi.org/10.1007/s10776-020-00501-8

    Article  Google Scholar 

  49. Liu, J., Wang, L., Fang, J., Guo, L., Lu, B., Shu, L.: Multi-target intense human motion analysis and detection using channel state information. Sensors 18(10), 3379 (2018). https://doi.org/10.3390/s18103379

  50. Guo, L., Wang, L., Liu, J., Zhou, W., Lu, B.: HuAc: human activity recognition using crowdsourced WiFi signals and skeleton data. Hindawi Wirel. Commun. Mob. Comput. 2018 (2018). https://doi.org/10.1155/2018/6163475

  51. Furqan, M., Solaija, M.S.J., Türkmen, H., Arslan, H.: Wireless communication, sensing, and REM: a security perspective. IEEE Open J. Commun. Soc. 2, 287–321 (2021). https://doi.org/10.1109/OJCOMS.2021.3054066

    Article  Google Scholar 

  52. Lin, S.-C., Chen, K.-C., Karimoddini, A.: SDVEC: software-defined vehicular edge computing with ultra-low latency. IEEE Commun. Mag. (2021). https://doi.org/10.1109/MCOM.004.2001124

    Article  Google Scholar 

  53. Liao, R.-F., et al.: Deep-learning-based physical layer authentication for industrial wireless sensor networks. Sensors 19(11), 2440 (2019). https://doi.org/10.3390/s19112440

    Article  Google Scholar 

  54. Liao, R., et al.: Multiuser physical layer authentication in internet of things with data augmentation. IEEE Internet Things J. 7(3), 2077–2088 (2020). https://doi.org/10.1109/JIOT.2019.2960099

    Article  Google Scholar 

  55. Bai, L., Zhu, L., Liu, J., Choi, J., Zhang, W.: Physical layer authentication in wireless communication networks: a survey. J. Commun. Inform. Netw. 5(3), 237–264 (2020)

    Google Scholar 

  56. Tian, Q., Lin, Y., Guo, X., Wang, J., AlFarraj, O., Tolba, A.: An identity authentication method of a MIoT device based on radio frequency (RF) fingerprint technology. Sensors 20(4), 1213 (2020). https://doi.org/10.3390/s20041213

    Article  Google Scholar 

  57. Axente, M.-S., Dobre, C., Ciobanu, R.-I., Purnichescu-Purtan, R.: Gait recognition as an authentication method for mobile devices. Sensors 20, 4110 (2020). https://doi.org/10.3390/s20154110

    Article  Google Scholar 

  58. Wang, H., Lymberopoulos, D., Liu, J.: Sensor-based user authentication. In: Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol. 8965, pp. 168–185. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15582-1_11

    Chapter  Google Scholar 

  59. Beech, W.A., Nielsen, D.A., Taylor, J.: AX.25 Link Access Protocol for Amateur Packet Radio: https://www.tapr.org/pdf/AX25.2.2.pdf. Accessed 28 Feb 2022

  60. APRS SPEC Addendum 1.2 Proposals. http://aprs.org/aprs12.html. Accessed 28 Feb 2022

  61. COREnect project D 2.1: Initial vision and requirement report, December 2020 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Von Hugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Von Hugo, D., Eichler, G., Sarikaya, B. (2022). Challenges of Future Smart and Secure IoT Networking. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2022. Communications in Computer and Information Science, vol 1585. Springer, Cham. https://doi.org/10.1007/978-3-031-06668-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06668-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06667-2

  • Online ISBN: 978-3-031-06668-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics