Skip to main content

Demonstrating Feasibility of Blockchain-Driven Carbon Accounting – A Design Study and Demonstrator

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1585))

Included in the following conference series:

Abstract

Carbon accounting calls for innovative digital infrastructures. The Paris Agreement and the 26th UN Climate Change Conference provide the frame for designing information systems for carbon accounting. This paper explores blockchain as a technology for carbon accounting and, in particular, for the Product Carbon Footprint. This article analyses core architectural designs of carbon footprints, consortia, and smart contract infrastructure. Experiences from the implementation of a carbon footprint blockchain demonstrator are reported. A coffee supply chain exemplifies the approach. Hyperledger Fabric and Minifabric from Hyperledger Labs are the technical frameworks used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNFCCC: paris agreement, united nations framework on climate change. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf. Accessed 04 Oct 2021

  2. Schneider, L., et al.: Robust accounting of international transfers under article 6 of the paris agreement discussion paper (2017). https://www.dehst.de/SharedDocs/downloads/EN/project-mechanisms/discussion-papers/Differences_and_commonalities_paris_agreement2.pdf?__blob=publicationFile&v=4

  3. World bank group: summary report: simulation on connecting climate market systems (English). https://documents.worldbank.org/en/publication/documents-reports/documentdetail/128121575306092470/summary%e2%80%90report%e2%80%90simulation%e2%80%90on%e2%80%90connecting%e2%80%90climate%e2%80%90market%e2%80%90systems. Accessed 17 Nov 2021

  4. NutriSafe: NutriSafe - Sicherheit in der Lebensmittelproduktion und -logistik durch die Distributed-Ledger-Technologie. https://nutrisafe.de. Accessed 27 July 2020

  5. Lamken, D., et al.: Design patterns and framework for blockchain integration in supply chains. In: IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2021 (2021). https://doi.org/10.1109/ICBC51069.2021.9461062

  6. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview (2018). https://doi.org/10.6028/NIST.IR.8202

  7. Bundesamt für Sicherheit in der Informationstechnik: Blockchain sicher gestalten. Bonn (2019)

    Google Scholar 

  8. Xu, X., et al.: A taxonomy of Blockchain-based systems for architecture design. In: 2017 IEEE International Conference on Software Architecture (ICSA), pp. 243–252 (2017). https://doi.org/10.1109/ICSA.2017.33

  9. Marchesi, M., Marchesi, L., Tonelli, R.: An agile software engineering method to design blockchain applications. In: Proceedings of the 14th Central and Eastern European Software Engineering Conference Russia. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3290621.3290627

  10. Hoiss, T., Seidenfad, K., Lechner, U.: Blockchain service operations - a structured approach to operate a blockchain solution. In: 2021 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), pp. 11–19. IEEE (2021). https://doi.org/10.1109/DAPPS52256.2021.00007

  11. Weking, J., Mandalenakis, M., Hein, A., Hermes, S., Böhm, M., Krcmar, H.: The impact of blockchain technology on business models – a taxonomy and archetypal patterns. Electron. Mark. 30(2), 285–305 (2019). https://doi.org/10.1007/s12525-019-00386-3

    Article  Google Scholar 

  12. Jensen, T., Hedman, J., Henningsson, S.: How tradelens delivers business value with blockchain technology. MIS Q. Exec. 18(4), 221–243 (2019). https://doi.org/10.17705/2msqe.00018

    Article  Google Scholar 

  13. Miehle, D., Henze, D., Seitz, A., Luckow, A., Bruegge, B.: PartChain: a decentralized traceability application for multi-tier supply chain networks in the automotive industry. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON), pp. 140–145. IEEE, Newark (2019). https://doi.org/10.1109/DAPPCON.2019.00027

  14. Catena-X automotive network e.V.i.G.: Catena-X automotive network. https://catena-x.net/en/. Accessed 15 Nov 2021

  15. Dietrich, F., Ge, Y., Turgut, A., Louw, L., Palm, D.: Review and analysis of blockchain projects in supply chain management. Procedia Comput. Sci. 180, 724–733 (2021). https://doi.org/10.1016/j.procs.2021.01.295

    Article  Google Scholar 

  16. Schmiedel, C., Fraunhofer IPK: die hyperledger fabric-blockchain sorgt für datensicherheit in der additiven fertigung. https://doi.org/10.1007/978-3-030-75004-6_3. https://www.ipk.fraunhofer.de/de/publikationen/futur/futur-online-exklusiv/vertrauen40.html. Accessed 09 Jan 2021

  17. Richardson, A., Xu, J.: Carbon trading with blockchain. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53356-4_7

    Chapter  Google Scholar 

  18. Eckert, J., López, D., Azevedo, C.L., Farooq, B.: A blockchain-based user-centric emission monitoring and trading system for multi-modal mobility. CoRR. abs/1908.0. (2019)

    Google Scholar 

  19. Baumann, T.: Blockchain and Emerging Digital Technologies for Enhancing Post-2020 Climate Markets (2018). https://doi.org/10.13140/RG.2.2.12242.71368

  20. Al Kawasmi, E., Arnautovic, E., Svetinovic, D.: Bitcoin-based decentralized carbon emissions trading infrastructure model. Syst. Eng. 18, 115–130 (2015). https://doi.org/10.1002/sys.21291

    Article  Google Scholar 

  21. Braden, S.: Blockchain potentials and limitations for selected climate policy instruments (2019). https://www.giz.de/en/downloads/giz2019-en-blockchain-potentials-for-climate.pdf

  22. Franke, L., Schletz, M., Salomo, S.: Designing a blockchain model for the paris agreement’s carbon market mechanism. Sustainability 12(3), 1068 (2020). https://doi.org/10.3390/su12031068

    Article  Google Scholar 

  23. Schletz, M., Franke, L., Salomo, S.: Blockchain application for the paris agreement carbon market mechanism—a decision framework and architecture. Sustainability 12(12), 5069 (2020). https://doi.org/10.3390/su12125069

    Article  Google Scholar 

  24. Linux foundation: hyperledger fabric. https://www.hyperledger.org/use/fabric. Accessed 28 Dec 2021

  25. Linux foundation: climate action and accounting SIG home. https://wiki.hyperledger.org/display/CASIG/Climate+Action+and+Accounting+SIG+Home. Accessed 18 Sep 2021

  26. Energywatch Inc.: carbon accounting – everything you need to know. https://energywatch-inc.com/carbon-accounting/. Accessed 10 Feb 2022

  27. Noelle Eckley Selin: carbon footprint. https://www.britannica.com/science/carbon-footprint

  28. German Emissions Trading Authority (DEHSt): how does emissions trading work? https://www.dehst.de/EN/european-emissions-trading/understanding-emissions-trading/fundamentals/fundamentals_node.html. Accessed 29 Dec 2021

  29. UNFCCC: data exchange standards for registry systems under the kyoto protocol. https://unfccc.int/files/kyoto_protocol/registry_systems/application/pdf/des_full_v1.1.10.pdf. Accessed 30 Jan 2022

  30. European commission: EU ETS handbook. https://ec.europa.eu/clima/system/files/2017-03/ets_handbook_en.pdf. Accessed 30 Dec 2021

  31. Abrell, J.: Database for the European Union Transaction Log. https://euets.info/static/download/Description_EUTL_database.pdf. Accessed 09 Jan 2021

  32. Hearnehough, H., Kachi, A., Mooldijk, S., Warnecke, C., Schneider, L.: Future role for voluntary carbon markets in the Paris era (2020). https://www.umweltbundesamt.de/publikationen/future-role-for-voluntary-carbon-markets-in-the

  33. Zhao, F., Chan, W.K.V.: When is blockchain worth it? a case study of carbon trading. Energies, 13 (2020). https://doi.org/10.3390/en13081980

  34. Isermeyer, F., Heidecke, C., Osterburg, B.: Einbeziehung des Agrarsektors in die CO2-Bepreisung (2019). https://www.thuenen.de/media/publikationen/thuenen-workingpaper/ThuenenWorkingPaper_136.pdf

  35. Lünenburger, B.: Klimaschutz und Emissionshandel in der Landwirtschaft (2013). http://www.uba.de/uba-info-medien/4397.html

  36. Aakre, S., Hovi, J.: Emission trading: participation enforcement determines the need for compliance enforcement. Eur. Union Polit. 11, 427–445 (2010). https://doi.org/10.1177/1465116510369265

    Article  Google Scholar 

  37. Lohmann, L.: Regulation as corruption in the carbon offset markets. In: Upsetting the Offset: The Political Economy of Carbon Markets. pp. 175–191. Mayfly Books, London (2009)

    Google Scholar 

  38. Frunza, M.C.: Fraud and carbon markets: the carbon connection (2013).https://doi.org/10.4324/9780203077399

  39. Hermwille, L., Kreibich, N.: Identity crisis? voluntary carbon crediting and the paris agreement (2016)

    Google Scholar 

  40. Kreibich, N., Hermwille, L.: Caught in between: credibility and feasibility of the voluntary carbon market post-2020. Clim. Policy. 21, 1–19 (2021). https://doi.org/10.1080/14693062.2021.1948384

    Article  Google Scholar 

  41. Schneider, L., Broekhoff, D., Cames, M., Healy, S., Füssler, J., La Hoz Theuer, S.: Market mechanisms in the paris agreement - differences and commonalities with kyoto mechanisms (2016). https://www.dehst.de/SharedDocs/downloads/DE/projektmechanismen/Differences_and_commonalities_paris_agreement_discussion_paper.html?nn=8596366

  42. Müller, B., Michaelowa, A.: How to operationalize accounting under article 6 market mechanisms of the Paris agreement. Clim. Policy. 19, 812–819 (2019). https://doi.org/10.1080/14693062.2019.1599803

    Article  Google Scholar 

  43. Hoiß, T., et al.: Design of blockchain-based information systems – design principles from the nutrisafe project. In: Clohessy, T., Walsh, E., Treiblmaier, H., and Stratopoulos, T. (eds.) “Blockchain beyond the Horizon” - Workshop at the European Conference on Information Systems (ECIS 2020) (2020)

    Google Scholar 

  44. Reimers, T., Leber, F., Lechner, U.: Integration of blockchain and internet of things in a car supply chain. In: 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON), pp. 146–151 (2019). https://doi.org/10.1109/DAPPCON.2019.00028

  45. Seidenfad, K., Hoiss, T., Lechner, U.: A blockchain to bridge business information systems and industrial automation environments in supply chains. In: Krieger, U.R., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2021. CCIS, vol. 1404, pp. 22–40. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75004-6_3

    Chapter  Google Scholar 

  46. Füssler, J., Wunderlich, A., Kreibich, N., Obergassel, W.: Incentives for private sector participation in the article 6.4 mechanism. discussion paper (2019). https://www.dehst.de/SharedDocs/downloads/EN/project-mechanisms/discussion-papers/climate-conference-2019_1.pdf?__blob=publicationFile&v=4

  47. Vogel, J., Hagen, S., Thomas, O.: Discovering Blockchain for Sustainable Product-Service Systems to enhance the Circular Economy (2019). https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1295&context=wi2019

  48. Gaiardelli, P., et al.: Product-service systems evolution in the era of Industry 4.0. Serv. Bus. 15(1), 177–207 (2021). https://doi.org/10.1007/s11628-021-00438-9

    Article  Google Scholar 

  49. Kim, S.-K., Huh, J.-H.: Blockchain of carbon trading for UN sustainable development goals. Sustainability 12, 4021 (2020). https://doi.org/10.3390/su12104021

    Article  Google Scholar 

  50. Greiner, S., Chagas, T., Krämer, N., Michaelowa, A., Brescia, D., Hoch, S.: Moving towards next generation carbon markets: observations from article 6 pilots. Freiburg (2019). https://doi.org/10.5167/uzh-175360

  51. European Energy Exchange AG: EU ETS Auctions. https://www.eex.com/en/markets/environmental-markets/eu-ets-auctions. Accessed 07 Jan 2022

  52. LIONS research project: carbon accounting demonstrator. https://github.com/LIONS-DLT/lab-toolchain/tree/master/carbon-demonstrator. Accessed 07 Jan 2022

  53. Li, T.: Minifabric: a hyperledger fabric quick start tool. https://www.hyperledger.org/blog/2020/04/29/minifabric-a-hyperledger-fabric-quick-start-tool-with-video-guides. Accessed 17 Nov 2021

  54. Hyperledger Labs: Minifabric Repository. https://github.com/hyperledger-labs/minifabric. Accessed 17 Nov 2021

  55. Li, T.: spec.yaml. https://github.com/hyperledger-labs/minifabric/blob/main/spec.yaml. Accessed 01 Jan 2021

  56. Hyperledger Labs: create runningonarm.md #322. https://github.com/hyperledger-labs/minifabric/pull/322. Accessed 28 Jan 2022

  57. OTARIS interactive services GmbH: MetaHL Fabric. https://github.com/OTARIS/MF-Chaincode. Accessed 07 Jan 2022

  58. Web 3.0 technologies stiftung: Polkadot. https://polkadot.network. Accessed 03 Jan 2022

  59. Nakamoto, S.: Bitcoin: a Peer-to-Peer electronic cash system, 9 (2008). https://doi.org/10.1007/s10838-008-9062-0

Download references

Acknowledgments

The Project LIONS is funded by dtec.bw–Digitalization and Technology Research Center of the Bundeswehr which we gratefully acknowledge. We want to thank our research partners from project LIONS for discussions, particularly Tim Hoiss, for his support with the NutriSafe code base, the coffee supply chain use case and his contributions to design and implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Seidenfad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seidenfad, K., Wagner, T., Hrestic, R., Lechner, U. (2022). Demonstrating Feasibility of Blockchain-Driven Carbon Accounting – A Design Study and Demonstrator. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2022. Communications in Computer and Information Science, vol 1585. Springer, Cham. https://doi.org/10.1007/978-3-031-06668-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06668-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06667-2

  • Online ISBN: 978-3-031-06668-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics