Skip to main content

On Critical Node Problems with Vulnerable Vertices

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2022)

Abstract

A vertex pair in an undirected graph is called connected if the two vertices are in the same connected component. In the NP-hard Critical Node Problem (CNP), the input is an undirected graph G with integers k and x, and the question is whether we can transform G via at most k vertex deletions into a graph whose total number of connected vertex pairs is at most x. In this work, we introduce and study two NP-hard variants of CNP where a subset of the vertices is marked as vulnerable and we aim to obtain a graph with at most x connected vertex pairs where at least one vertex is vulnerable. In the first variant, which generalizes CNP, we may delete vulnerable and non-vulnerable vertices. In the second variant, we may only delete non-vulnerable vertices.

We perform a parameterized complexity study of both problems. For example, we show that both problems are FPT with respect to \(k+x\). Furthermore, in case of deletable vulnerable vertices we provide a polynomial kernel for the parameter \({{\,\mathrm{vc}\,}}+k\), where \({{\,\mathrm{vc}\,}}\) is the vertex cover number. In case of non-deletable vulnerable vertices, we prove NP-hardness even when there is only one vulnerable vertex.

Most of the results of this work are also contained in the first author’s Master’s thesis [12].

F. Sommer—Supported by the DFG, project EAGR KO 3669/6-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addis, B., Di Summa, M., Grosso, A.: Identifying critical nodes in undirected graphs: complexity results and polynomial algorithms for the case of bounded treewidth. Discret. Appl. Math. 161(16–17), 2349–2360 (2013)

    Article  MathSciNet  Google Scholar 

  2. Agrawal, A., Lokshtanov, D., Mouawad, A.E.: Critical node cut parameterized by treewidth and solution size is W[1]-hard. In: Bodlaender, H.L., Woeginger, G.J. (eds.) Graph-Theoretic Concepts in Computer Science, WG 2017. LNCS, vol. 10520, pp. 32–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_3

  3. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

  5. Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees. Comput. Oper. Res. 38(12), 1766–1774 (2011)

    Article  MathSciNet  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science, Springer, Cham (2013). https://doi.org/10.1007/978-1-4471-5559-1

  7. Enright, J.A., Meeks, K.: Deleting edges to restrict the size of an epidemic: a new application for treewidth. Algorithmica 80(6), 1857–1889 (2018). https://doi.org/10.1007/s00453-017-0311-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity of cutting a few vertices from a graph. In: Chatterjee, K., Sgall, J. (eds.) Mathematical Foundations of Computer Science 2013, MFCS 2013. LNCS, vol. 8087, pp. 421–432. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_38

  9. Hermelin, D., Kaspi, M., Komusiewicz, C., Navon, B.: Parameterized complexity of critical node cuts. Theor. Comput. Sci. 651, 62–75 (2016)

    Article  MathSciNet  Google Scholar 

  10. Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in networks: a survey. Comput. Sci. Rev. 28, 92–117 (2018)

    Article  MathSciNet  Google Scholar 

  11. Prieto-Rodríguez, E.: Systematic kernelization in FPT algorithm design. Ph.D. Thesis, The University of Newcastle (2005)

    Google Scholar 

  12. Schestag, J.: Critical Node Problem with Vulnerable Vertices. Master’s Thesis, Philipps-Universität Marburg (2021)

    Google Scholar 

  13. Shen, Y., Nguyen, N.P., Xuan, Y., Thai, M.T.: On the discovery of critical links and nodes for assessing network vulnerability. IEEE/ACM Trans. Netw. 21(3), 963–973 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Grüttemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schestag, J., Grüttemeier, N., Komusiewicz, C., Sommer, F. (2022). On Critical Node Problems with Vulnerable Vertices. In: Bazgan, C., Fernau, H. (eds) Combinatorial Algorithms. IWOCA 2022. Lecture Notes in Computer Science, vol 13270. Springer, Cham. https://doi.org/10.1007/978-3-031-06678-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06678-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06677-1

  • Online ISBN: 978-3-031-06678-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics