Skip to main content

Formal Methods for Trusted Space Autonomy: Boon or Bane?

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13260))

Included in the following conference series:

Abstract

Trusted Space Autonomy is challenging in that space systems are complex artifacts deployed in a high stakes environment with complicated operational settings. Thus far these challenges have been met using the full arsenal of tools: formal methods, informal methods, testing, runtime techniques, and operations processes. Using examples from previous deployments of autonomy (e.g. the Remote Agent Experiment on Deep Space One, Autonomous Sciencecraft on Earth Observing One, WATCH on MER, IPEX, AEGIS on MER, MSL, and M2020, and the M2020 Onboard planner), we discuss how each of these approaches have been used to enable successful deployment of autonomy. We next focus on relatively limited use of formal methods (both prior to deployment and runtime methods). From the needs perspective, formal methods may represent the best chance for reliable autonomy. Testing, informal methods, and operations accommodations do not scale well with increasing complexity of the autonomous system as the number of text cases explodes and human effort for informal methods becomes infeasible. However from the practice perspective, formal methods have been limited in their application due to: difficulty in eliciting formal specifications, challenges in representing complex constraints such as metric time and resources, and requiring significant expertise in formal methods to apply properly to complex, critical applications. We discuss some of these challenges as well as the opportunity to extend formal and informal methods into runtime validation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unfortunately the Mini-TES instrument failed before AEGIS-MER operational qualification so AEGIS was never able to be used with Mini-TES on MER on Mars.

References

  1. Agrawal, J., Chi, W., Chien, S.A., Rabideau, G., Gaines, D., Kuhn, S.: Analyzing the effectiveness of rescheduling and flexible execution methods to address uncertainty in execution duration for a planetary rover. Robot. Auton. Syst. 140 (2021) 103758 (2021). https://doi.org/10.1016/j.robot.2021.103758

  2. Agrawal, J., et al.: Enabling limited resource-bounded disjunction in scheduling. J. Aerosp. Inf. Syst. 18(6), 322–332 (2021). https://doi.org/10.2514/1.I010908

  3. Agrawal, J., Yelamanchili, A., Chien, S.: Using explainable scheduling for the mars 2020 rover mission. In: Workshop on Explainable AI Planning (XAIP), International Conference on Automated Planning and Scheduling (ICAPS XAIP), October 2020. https://arxiv.org/pdf/2011.08733.pdf

  4. Bernard, D.E., et al.: The remote agent experiment. In: Deep Space One Technology Validation Symposium, Pasadena, CA, February 1999. https://ntrs.nasa.gov/api/citations/20000116204/downloads/20000116204.pdf

  5. Castano, A., et al.: Automatic detection of dust devils and clouds at mars. Mach. Vis. Appl. 19(5–6), 467–482 (2008)

    Article  Google Scholar 

  6. Cavano, J., LaMonica, F.: Quality assurance in future development environments. IEEE Softw. 4, 26–34 (1987)

    Article  Google Scholar 

  7. Chien, S., et al.: Onboard autonomy on the intelligent payload experiment (IPEX) CubeSat mission. J. Aerosp. Inf. Syst. (JAIS) 14(6), 307–315 (2016). https://doi.org/10.2514/1.I010386

  8. Chien, S., Mclaren, D., Tran, D., Davies, A.G., Doubleday, J., Mandl, D.: Onboard product generation on earth observing one: a pathfinder for the proposed Hyspiri mission intelligent payload module. IEEE JSTARS Special Issue on the Earth Observing One (EO-1) Satellite Mission: Over a decade in space (2013)

    Google Scholar 

  9. Chien, S., et al.: Using autonomy flight software to improve science return on earth observing one. J. Aerosp. Comput. Inf. Commun. (JACIC) 2, 196–216 (2005)

    Article  Google Scholar 

  10. Chien, S., Wagstaff, K.L.: Robotic space exploration agents. Sci. Robot. (2017). https://www.science.org/doi/10.1126/scirobotics.aan4831

  11. Cichy, B., Chien, S., Schaffer, S., Tran, D., Rabideau, G., Sherwood, R.: Validating the autonomous EO-1 science agent. In: International Workshop on Planning and Scheduling for Space (IWPSS 2004), Darmstadt, Germany, June 2004

    Google Scholar 

  12. Estlin, T., et al.: AEGIS automated targeting for the MER opportunity rover. ACM Trans. Intell. Syst. Technol. 3(3), 1–19 (2012). Article No.: 50. https://doi.org/10.1145/2168752.2168764

  13. Feather, M.S., Smith, B.: Automatic generation of test oracles–from pilot studies to application. Autom. Softw. Eng. 8(1), 31–61 (2001)

    Article  Google Scholar 

  14. Francis, R., et al.: AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: deployment and results of initial science team use. Sci. Robot. 2 (2017). https://doi.org/10.1126/scirobotics.aan4582

  15. Gaines, D., Rabideau, G., Wong, V., Kuhn, S., Fosse, E., Chien, S.: The Mars 2020 on-board planner: balancing performance and computational constraints. In: Flight Software Workshop, February 2022

    Google Scholar 

  16. George, A.: Margaret Hamilton led the NASA software team that landed astronauts on the moon (2019). https://www.smithsonianmag.com/smithsonian-institution/margaret-hamilton-led-nasa-software-team-landed-astronauts-moon-180971575/. Accessed 25 Mar 2022

  17. Havelund, K., et al.: Formal analysis of the remote agent before and after flight. In: Lfm 2000: Fifth NASA Langley Formal Methods Workshop (2000)

    Google Scholar 

  18. Havelund, K., Lowry, M., Penix, J.: Formal analysis of a space-craft controller using spin. IEEE Trans. Softw. Eng. 27(8), 749–765 (2001)

    Article  Google Scholar 

  19. Hayden, S.C., Sweet, A.J., Christa, S.E.: Livingstone model-based diagnosis of earth observing one. In: AIAA Intelligent Systems Technical Conference. AIAA (2004). https://doi.org/10.2514/6.2004-6225

  20. Hayden, S.C., Sweet, A.J., Shulman, S.: Lessons learned in the livingstone 2 on earth observing one flight experiment. In: AIAA Infotech@Aerospace. AIAA (2005). https://doi.org/10.2514/6.2005-7000

  21. Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)

    Article  Google Scholar 

  22. Holzmann, G.J.: Cloud-based verification of concurrent software. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 311–327. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_15

    Chapter  Google Scholar 

  23. Holzmann, G.J.: Test fatigue. IEEE Softw. 37(4), 11–16 (2020)

    Article  Google Scholar 

  24. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans. Softw. Eng. 37(6), 845–857 (2010)

    Article  Google Scholar 

  25. Jones, C.: Applied Software Measurement. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  26. Joyce, E.: Is error free software possible? Datamation 35(18), 749–765 (1989)

    Google Scholar 

  27. JPL-Artificial-Intelligence-Group: Autonomous sciencecraft web site (2017). https://ai.jpl.nasa.gov/public/projects/ase/. Accessed 25 Mar 2022

  28. JPL-Artificial-Intelligence-Group: Mars 2020 onboard planner web site (2017). https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/. Accessed 25 Mar 2022

  29. Musa, J., et al.: Software Reliability: Measurement, Prediction, Application. McGraw-Hill, New York (1990)

    Google Scholar 

  30. Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote agent: to boldly go where no AI system has gone before. Artif. Intell. 103(1–2), 5–47 (1998)

    Article  Google Scholar 

  31. NASA: Chapter two: Computers on board the apollo spacecraft. In: Computers in Spaceflight: The NASA Experience. NASA. https://history.nasa.gov/computers/Ch2-6.html?mod=article_inline. Accessed 27 Mar 2022

  32. Rabideau, G., et al.: Onboard automated scheduling for the Mars 2020 rover. In: Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation for Space, i-SAIRAS 2020, European Space Agency, Noordwijk, NL (2020)

    Google Scholar 

  33. Smith, B.D., Feather, M.S., Muscettola, N.: Challenges and methods in testing the remote agent planner. In: AIPS, pp. 254–263 (2000)

    Google Scholar 

  34. Tran, D., Chien, S., Rabideau, G., Cichy, B.: Flight software issues in onboard automated planning: Lessons learned on EO-1. In: International Workshop on Planning and Scheduling for Space (IWPSS 2004), Darmstadt, Germany, June 2004. https://ai.jpl.nasa.gov/public/papers/tran_iwpss2004.pdf

  35. Tran, D., Chien, S., Rabideau, G., Cichy, B.: Safe agents in space: preventing and responding to anomalies in the autonomous sciencecraft experiment. In: Safety and Security in Multi Agent Systems Workshop (SASEMAS), Autonomous Agents and Multi-Agent Systems Conference (AAMAS 2005), Utrecht, Netherlands, July 2005. https://ai.jpl.nasa.gov/public/papers/tran_sasemas2005_PreventingResponding.pdf

  36. Yelamanchili, A., et al.: Ground-based automated scheduling for operations of the Mars 2020 rover mission. In: Proceedings Space Operations 2021, May 2021. https://spaceops.iafastro.directory/a/proceedings/SpaceOps-2021/SpaceOps-2021/6/manuscripts/SpaceOps-2021,6,x1385.pdf

Download references

Acknowledgments

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve A. Chien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chien, S.A. (2022). Formal Methods for Trusted Space Autonomy: Boon or Bane?. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds) NASA Formal Methods. NFM 2022. Lecture Notes in Computer Science, vol 13260. Springer, Cham. https://doi.org/10.1007/978-3-031-06773-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06773-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06772-3

  • Online ISBN: 978-3-031-06773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics