Skip to main content

Research on Application of Principal Component Analysis in 3d Video Dimension Reduction

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13339))

Included in the following conference series:

  • 1039 Accesses

Abstract

With the development of information technology and multimedia technology, a short video to become a user preferences, due to the long short and large amount of information become the user to be bestowed favor on newly, in order to find out from thousands of video two similar video, traditional approach is to extract the corresponding characteristic in the video, such as color, texture, gray level and other characteristics, and create the corresponding data index, Then put to query to extract the corresponding 3 d video features and compare the features in the database, so as to find the most similar 3 d video, the traditional way of data information is two-dimensional video is used, but in the data information of very large 3 d video efficiency and the effect is greatly reduced, and the results will greatly reduce the efficiency of the traditional data retrieval, Here, the method of principal component analysis without supervision problem is used to reduce the dimension of 3d video information, which can reduce the dimension from 128 to 64, thus greatly improving the efficiency of 3D video retrieval. Experimental results show that the method of principal component analysis for 3d data dimensionality reduction can greatly improve the efficiency of video retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.360doc.com/content/15/0331/07/20625683_459457113.shtml (2015)

  2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR 2015 (2015)

    Google Scholar 

  3. Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Metric learning for large scale image classification: generalizing to new classes at near-zero cost. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 488–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_35

    Chapter  Google Scholar 

  4. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web- based tool for image annotation. Int. J. Comput. Vis. 77(1), 157–173 (2008)

    Article  Google Scholar 

  5. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (2010)

    Google Scholar 

  6. Lecun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  7. Shankar, K., Venkatraman, S.: A secure encrypted classified electronic healthcare data for public cloud environment. Intell. Autom. Soft Comput. 32(2), 765–779 (2022)

    Article  Google Scholar 

  8. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_42

    Chapter  Google Scholar 

  9. Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2071–2084 (2015)

    Article  Google Scholar 

  10. Zeiler, M., Taylor, G., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: Computer Vision and Pattern Recognition (CVPR 2011) (2011)

    Google Scholar 

  11. Howard, A.G.: Some improvements on deep convolutional neural network based image classification. In: Proceedings of the ICLR 2014 (2014)

    Google Scholar 

  12. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  13. Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 178–187 (2007)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR 2015 (2015)

    Google Scholar 

  15. Anil, K.J., Robert, P.W.D., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 21(1), 4–37 (2000)

    Google Scholar 

  16. Onshaunjit, J., Srinonchat, J.: Algorithmic scheme for concurrent detection and classification of printed circuit board defects. Comput. Mater. Continua 71(1), 355–367 (2022)

    Article  Google Scholar 

  17. Huber, P.J.: Projection pursuit. Ann. Stat. 13(2), 435–475 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Palpandi, S., Meeradevi, T.: Development of efficient classification systems for the diagnosis of melanoma. Comput. Syst. Sci. Eng. 42(1), 361–371 (2022)

    Article  Google Scholar 

  19. Zhang, X., Sun, X., Sun, X., Wang, P.: Deformation expression of soft tissue based on BP neural network. Intell. Autom. Soft Comput. 32(2), 1041–1053 (2022)

    Google Scholar 

  20. Thomas, L.G., Michael, L.K.: A multidimensional scaling approach to mental multiplication. Memory Congn. 30(1), 97–106 (2002)

    Article  Google Scholar 

  21. Comon, P.: Independent component analysis: a new concept. Signal Process. 36(3), 287–314 (1994)

    Article  Google Scholar 

  22. Fukunnaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Cambridge (1991)

    Google Scholar 

  23. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2006)

    Article  Google Scholar 

  24. Jian, Y., Zhang, D.: Globally maximizing, ocally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29, 650–664 (2007)

    Article  Google Scholar 

  25. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  26. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  27. Lin, T., Zha, H.: Riemannian manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 796–809 (2008)

    Article  Google Scholar 

  28. Xiao, R., Zhao, Q., Zhang, D., et al.: Facial expression recognition on multiple manifolds. Pattern Recogn. 44(1), 107–116 (2011)

    Article  Google Scholar 

  29. Huang, H.B., Huo, H., Fang, T.: Hierarchical manifold learning with applications to supervised classification for high-resolution remotely sensed images. IEEE Trans. Geosci. Remote Sens. 52(3), 1677–1692 (2013)

    Article  Google Scholar 

  30. Qing, J., Huo, H., Fang, T.: Supervised classification of multispectral remote sensing images based on the nearest reduced convex hull approach. J. Appl. Remote Sens. 3(1), 033550 (2009)

    Article  Google Scholar 

  31. Chen, X., Fang, T., Huo, H., et al.: Graph-based feature selection for object-oriented classification in VHR airborne imagery. IEEE Trans. Geosci. Remote Sens. 49(1), 353–365 (2011)

    Article  Google Scholar 

  32. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 2003(4), 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwen Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, S., Yang, T., Sui, Z. (2022). Research on Application of Principal Component Analysis in 3d Video Dimension Reduction. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13339. Springer, Cham. https://doi.org/10.1007/978-3-031-06788-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06788-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06787-7

  • Online ISBN: 978-3-031-06788-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics