Skip to main content

Secure Evaluation of Discrete Sine Transform in Homomorphic Encrypted Domain

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13339))

Included in the following conference series:

  • 1320 Accesses

Abstract

Discrete sine transform (DST) is widely used in compression encoding, image processing, and speech enhancement. In cloud computing, outsourcing plaintext data to the cloud has the risk of private data leakage. In this paper, we study how to realize data computation outsourcing with privacy protection. We propose a scheme to implement DST in the encrypted domain that uses the scaling method to represent decimals. To improve the accuracy, we also propose a new scheme to implement high precision encrypted domain DST. We approximate complex numbers with high precision using integer coefficient polynomials whose independent variable is a unit root. With this representation, we can perform DST in the encryption domain with high precision. We conducted experiments to verify the effectiveness and efficiency. The two schemes have the advantages of high speed and high precision, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, L., Fu, Z.: Privacy-preserving genetic algorithm outsourcing in cloud computing. J. Cybersecur. 2(1), 49 (2020)

    Google Scholar 

  2. Xia, Z., Wang, L., Tang, J., Xiong, N.N., Weng, J.: A privacy-preserving image retrieval scheme using secure local binary pattern in cloud computing. IEEE Trans. Netw. Sci. Eng. 8(1), 318–330 (2020)

    Article  MathSciNet  Google Scholar 

  3. Lagendijk, R.L., Erkin, Z., Barni, M.: Encrypted signal processing for privacy protection: conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal Process. Mag. 30(1), 82–105 (2013)

    Article  Google Scholar 

  4. Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete Fourier transform in the encrypted domain. IEEE Trans. Inf. Forensics Secur. 4(1), 86–97 (2009)

    Article  Google Scholar 

  5. Zheng, P., Huang, J.: Discrete wavelet transform and data expansion reduction in homomorphic encrypted domain. IEEE Trans. Image Process. 22(6), 2455–2468 (2013)

    Article  MathSciNet  Google Scholar 

  6. Pedrouzo-Ulloa, A., Troncoso-Pastoriza, J.R., Pérez-González, F.: Number theoretic transforms for secure signal processing. IEEE Trans. Inf. Forensics Secur. 12(5), 1125–1140 (2017)

    Article  Google Scholar 

  7. Zheng, P., Huang, J.: Efficient encrypted images filtering and transform coding with Walsh-Hadamard transform and parallelization. IEEE Trans. Image Process. 27(5), 2541–2556 (2018)

    Article  MathSciNet  Google Scholar 

  8. Zeng, K., Zheng, P., Liu, H.: Secure outsourced numerical solution of algebraic equations. In: Sun, X., Wang, J., Bertino, E. (eds.) ICAIS 2020. CCIS, vol. 1254, pp. 326–337. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-8101-4_30

    Chapter  Google Scholar 

  9. Guo, J., Zheng, P., Huang, J.: Efficient privacy-preserving anomaly detection and localization in bitstream video. IEEE Trans. Circ. Syst. Video Technol. 30, 3268–3281 (2019)

    Article  Google Scholar 

  10. Ishiyama, T., Suzuki, T., Yamana, H.: Highly accurate CNN inference using approximate activation functions over homomorphic encryption. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3989–3995 (2020)

    Google Scholar 

  11. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. IACR Cryptol. ePrint Arch. 2017, 35 (2017)

    Google Scholar 

  12. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, vol. 48 of JMLR Workshop and Conference Proceedings, pp. 201–210. JMLR.org (2016)

    Google Scholar 

  13. Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over encrypted data. CoRR abs/1711.05189 (2017)

    Google Scholar 

  14. Rivest, R.L., Adleman, L.M., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Compuation (1978)

    Google Scholar 

  15. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  16. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University (2009)

    Google Scholar 

  17. Gentry, C., Brakerski, Z., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6, 1–36 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: International Conference on Selected Areas in Cryptography (2016)

    Google Scholar 

  19. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. Eprint Arch. (2012)

    Google Scholar 

  20. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33, 34–91 (2019)

    Article  MathSciNet  Google Scholar 

  21. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approximate homomorphic encryption. In: International Conference on Selected Areas in Cryptography (2018)

    Google Scholar 

  22. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques (2018)

    Google Scholar 

  23. Ren, H., Niu, S.: Separable reversible data hiding in homomorphic encrypted domain using POB number system. Multimedia Tools Appl. 81, 1–27 (2021)

    Google Scholar 

  24. Yu, H., Yin, L., Zhang, H., Zhan, D., Qu, J., Zhang, G.: Road distance computation using homomorphic encryption in road networks. CMC-Comput. Mater. Continua 69(3), 3445–3458 (2021)

    Article  Google Scholar 

  25. Dong, D., Wu, Y., Xiong, L., Xia, Z.: A privacy preserving deep linear regression scheme based on homomorphic encryption. J. Big Data 1(3), 145 (2019)

    Article  Google Scholar 

  26. Martucci, S.A.: Symmetric convolution and the discrete sine and cosine transforms: principles and applications. Georgia Institute of Technology (1993)

    Google Scholar 

  27. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  28. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over encrypted data in outsourced environments. IEEE (2013)

    Google Scholar 

  29. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: ACM SIGSAC Conference on Computer & Communications Security (2016)

    Google Scholar 

  30. Zhang, Y., Zheng, P., Luo, W.: Privacy-preserving outsourcing computation of QR decomposition in the encrypted domain. In: 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE) (2019)

    Google Scholar 

  31. Regev, O.: The learning with errors problem (2010)

    Google Scholar 

  32. Peikert, C.: A Decade of Lattice Cryptography (2016)

    Google Scholar 

  33. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31

    Chapter  MATH  Google Scholar 

  34. Albrecht, M., et al.: Homomorphic encryption standard. Cryptology ePrint Archive, Report 2019/939 (2019). https://ia.cr/2019/939

  35. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100, 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  36. Bianchi, T., Piva, A., Barni, M.: Encrypted domain DCT based on homomorphic cryptosystems. EURASIP J. Inf. Secur. 2009(1), 716357 (2009)

    Article  Google Scholar 

  37. Costache, A., Smart, N.P., Vivek, S.: Faster homomorphic evaluation of discrete Fourier transforms. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 517–529. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_29

    Chapter  Google Scholar 

  38. Halevi, S., Shoup, V.: Helib (2019). HELib https://github.com.shaih/HElib

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Guangdong (2019A1515010746, 2022A1515011897), in part by the Science and Technology Projects in Guangzhou (202102080354), in part by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness (HNTS2022023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peijia Zheng or Hongmei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, H., Cai, Z., Zheng, P., Liu, H., Luo, W. (2022). Secure Evaluation of Discrete Sine Transform in Homomorphic Encrypted Domain. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13339. Springer, Cham. https://doi.org/10.1007/978-3-031-06788-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06788-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06787-7

  • Online ISBN: 978-3-031-06788-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics