Abstract
Discrete sine transform (DST) is widely used in compression encoding, image processing, and speech enhancement. In cloud computing, outsourcing plaintext data to the cloud has the risk of private data leakage. In this paper, we study how to realize data computation outsourcing with privacy protection. We propose a scheme to implement DST in the encrypted domain that uses the scaling method to represent decimals. To improve the accuracy, we also propose a new scheme to implement high precision encrypted domain DST. We approximate complex numbers with high precision using integer coefficient polynomials whose independent variable is a unit root. With this representation, we can perform DST in the encryption domain with high precision. We conducted experiments to verify the effectiveness and efficiency. The two schemes have the advantages of high speed and high precision, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jiang, L., Fu, Z.: Privacy-preserving genetic algorithm outsourcing in cloud computing. J. Cybersecur. 2(1), 49 (2020)
Xia, Z., Wang, L., Tang, J., Xiong, N.N., Weng, J.: A privacy-preserving image retrieval scheme using secure local binary pattern in cloud computing. IEEE Trans. Netw. Sci. Eng. 8(1), 318–330 (2020)
Lagendijk, R.L., Erkin, Z., Barni, M.: Encrypted signal processing for privacy protection: conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal Process. Mag. 30(1), 82–105 (2013)
Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete Fourier transform in the encrypted domain. IEEE Trans. Inf. Forensics Secur. 4(1), 86–97 (2009)
Zheng, P., Huang, J.: Discrete wavelet transform and data expansion reduction in homomorphic encrypted domain. IEEE Trans. Image Process. 22(6), 2455–2468 (2013)
Pedrouzo-Ulloa, A., Troncoso-Pastoriza, J.R., Pérez-González, F.: Number theoretic transforms for secure signal processing. IEEE Trans. Inf. Forensics Secur. 12(5), 1125–1140 (2017)
Zheng, P., Huang, J.: Efficient encrypted images filtering and transform coding with Walsh-Hadamard transform and parallelization. IEEE Trans. Image Process. 27(5), 2541–2556 (2018)
Zeng, K., Zheng, P., Liu, H.: Secure outsourced numerical solution of algebraic equations. In: Sun, X., Wang, J., Bertino, E. (eds.) ICAIS 2020. CCIS, vol. 1254, pp. 326–337. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-8101-4_30
Guo, J., Zheng, P., Huang, J.: Efficient privacy-preserving anomaly detection and localization in bitstream video. IEEE Trans. Circ. Syst. Video Technol. 30, 3268–3281 (2019)
Ishiyama, T., Suzuki, T., Yamana, H.: Highly accurate CNN inference using approximate activation functions over homomorphic encryption. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3989–3995 (2020)
Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. IACR Cryptol. ePrint Arch. 2017, 35 (2017)
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, vol. 48 of JMLR Workshop and Conference Proceedings, pp. 201–210. JMLR.org (2016)
Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over encrypted data. CoRR abs/1711.05189 (2017)
Rivest, R.L., Adleman, L.M., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Compuation (1978)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University (2009)
Gentry, C., Brakerski, Z., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6, 1–36 (2014)
Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. In: International Conference on Selected Areas in Cryptography (2016)
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. Eprint Arch. (2012)
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33, 34–91 (2019)
Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approximate homomorphic encryption. In: International Conference on Selected Areas in Cryptography (2018)
Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques (2018)
Ren, H., Niu, S.: Separable reversible data hiding in homomorphic encrypted domain using POB number system. Multimedia Tools Appl. 81, 1–27 (2021)
Yu, H., Yin, L., Zhang, H., Zhan, D., Qu, J., Zhang, G.: Road distance computation using homomorphic encryption in road networks. CMC-Comput. Mater. Continua 69(3), 3445–3458 (2021)
Dong, D., Wu, Y., Xiong, L., Xia, Z.: A privacy preserving deep linear regression scheme based on homomorphic encryption. J. Big Data 1(3), 145 (2019)
Martucci, S.A.: Symmetric convolution and the discrete sine and cosine transforms: principles and applications. Georgia Institute of Technology (1993)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)
Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over encrypted data in outsourced environments. IEEE (2013)
Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: ACM SIGSAC Conference on Computer & Communications Security (2016)
Zhang, Y., Zheng, P., Luo, W.: Privacy-preserving outsourcing computation of QR decomposition in the encrypted domain. In: 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE) (2019)
Regev, O.: The learning with errors problem (2010)
Peikert, C.: A Decade of Lattice Cryptography (2016)
Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31
Albrecht, M., et al.: Homomorphic encryption standard. Cryptology ePrint Archive, Report 2019/939 (2019). https://ia.cr/2019/939
Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100, 90–93 (1974)
Bianchi, T., Piva, A., Barni, M.: Encrypted domain DCT based on homomorphic cryptosystems. EURASIP J. Inf. Secur. 2009(1), 716357 (2009)
Costache, A., Smart, N.P., Vivek, S.: Faster homomorphic evaluation of discrete Fourier transforms. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 517–529. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_29
Halevi, S., Shoup, V.: Helib (2019). HELib https://github.com.shaih/HElib
Acknowledgements
This work was supported in part by the Natural Science Foundation of Guangdong (2019A1515010746, 2022A1515011897), in part by the Science and Technology Projects in Guangzhou (202102080354), in part by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness (HNTS2022023).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zeng, H., Cai, Z., Zheng, P., Liu, H., Luo, W. (2022). Secure Evaluation of Discrete Sine Transform in Homomorphic Encrypted Domain. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13339. Springer, Cham. https://doi.org/10.1007/978-3-031-06788-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-031-06788-4_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06787-7
Online ISBN: 978-3-031-06788-4
eBook Packages: Computer ScienceComputer Science (R0)