Abstract
In the satellite-ground quantum key distribution network for electric IoT, the transmitted data may have errors caused by the external environment and equipment. In order to ensure the correctness and consistency of the transmitted data, we propose a data reconciliation model based on quantum low density parity check (QLDPC) code for satellite-ground quantum key distribution network. We perform the check operator of QLDPC on the obtained raw keys, and use belief propagation algorithm and ordered statistics decoding technology to implement error correction. Compared with MET-LDPC and Turbo code, our model based on QLDPC has higher error correction efficiency with the increase of bit error rate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bennett, C.H., Brassard, G.: An update on quantum cryptography. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 475–480. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_39
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)
Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018 (1998)
Inoue, K., Waks, E., Yamamoto, Y.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)
Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89(3), 037902 (2002)
Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)
Boaron, A., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)
Guo, L., Ran, Q., Jin, D., Huang, D.: QKD iterative information reconciliation based on LDPC codes. Int. J. Theor. Phys. 59(6), 1–13 (2020)
Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution (2018). arXiv:1805.05046
Ben Ismail, D.K., Karadimas, P., Epiphaniou, G., Al-Khateeb, H.M.: Error reconciliation with turbo codes for secret key generation in vehicular AD hoc networks. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2018. AISC, vol. 857, pp. 696–704. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01177-2_51
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098 (1996)
Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741 (1996)
Gottesman, D.: Stabilizer codes and quantum error correction. California Institute of Technology (1997)
Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)
MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50(10), 2315–2330 (2004)
Babar, Z., Botsinis, P., Alanis, D., Ng, S.X., Hanzo, L.: Construction of quantum LDPC codes from classical row-circulant QC-LDPCs. IEEE Commun. Lett. 20(1), 9–12 (2015)
Grospellier, A., Grouès, L., Krishna, A., Leverrier, A.: Combining hard and soft decoders for hypergraph product codes. Quantum 5, 432 (2021)
Roffe, J., White, D.R., Burton, S., Campbell, E.T.: Decoding across the quantum LDPC code landscape (2020). arXiv:2005.07016
Fossorier, M.P.C., Lin, S.: Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans. Inf. Theory 41(5), 1379–1396 (1995)
Panteleev, P., Kalachev, G.: Degenerate quantum LDPC codes with good finite length performance (2019). arXiv:1904.02703
Richardson, T., Urbanke, R.: Multi-edge type LDPC codes. In: Workshop honoring, Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena, California. Springer (2002)
Liao, S.K., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)
Acknowledgements
The authors would like to thank the anonymous reviewers and editor for their comments that improved the quality of this paper. This work is support by Scientific Project of Xinjiang Electric Power Co., Ltd. of SGCC under Grant No. SGXJXT00JFJS2000097.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, W. et al. (2022). A Data Reconciliation Model Based on QLDPC for Satellite-Ground Quantum Key Distribution Network. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13340. Springer, Cham. https://doi.org/10.1007/978-3-031-06791-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-06791-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06790-7
Online ISBN: 978-3-031-06791-4
eBook Packages: Computer ScienceComputer Science (R0)