Skip to main content

A Data Reconciliation Model Based on QLDPC for Satellite-Ground Quantum Key Distribution Network

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13340))

Included in the following conference series:

  • 1322 Accesses

Abstract

In the satellite-ground quantum key distribution network for electric IoT, the transmitted data may have errors caused by the external environment and equipment. In order to ensure the correctness and consistency of the transmitted data, we propose a data reconciliation model based on quantum low density parity check (QLDPC) code for satellite-ground quantum key distribution network. We perform the check operator of QLDPC on the obtained raw keys, and use belief propagation algorithm and ordered statistics decoding technology to implement error correction. Compared with MET-LDPC and Turbo code, our model based on QLDPC has higher error correction efficiency with the increase of bit error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: An update on quantum cryptography. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 475–480. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_39

    Chapter  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  Google Scholar 

  3. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018 (1998)

    Article  Google Scholar 

  4. Inoue, K., Waks, E., Yamamoto, Y.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)

    Article  Google Scholar 

  5. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89(3), 037902 (2002)

    Article  Google Scholar 

  6. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  Google Scholar 

  7. Boaron, A., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)

    Article  Google Scholar 

  8. Guo, L., Ran, Q., Jin, D., Huang, D.: QKD iterative information reconciliation based on LDPC codes. Int. J. Theor. Phys. 59(6), 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  9. Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution (2018). arXiv:1805.05046

  10. Ben Ismail, D.K., Karadimas, P., Epiphaniou, G., Al-Khateeb, H.M.: Error reconciliation with turbo codes for secret key generation in vehicular AD hoc networks. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2018. AISC, vol. 857, pp. 696–704. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01177-2_51

    Chapter  Google Scholar 

  11. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  Google Scholar 

  12. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098 (1996)

    Article  Google Scholar 

  13. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741 (1996)

    Article  MathSciNet  Google Scholar 

  14. Gottesman, D.: Stabilizer codes and quantum error correction. California Institute of Technology (1997)

    Google Scholar 

  15. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  16. MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50(10), 2315–2330 (2004)

    Article  MathSciNet  Google Scholar 

  17. Babar, Z., Botsinis, P., Alanis, D., Ng, S.X., Hanzo, L.: Construction of quantum LDPC codes from classical row-circulant QC-LDPCs. IEEE Commun. Lett. 20(1), 9–12 (2015)

    Article  Google Scholar 

  18. Grospellier, A., Grouès, L., Krishna, A., Leverrier, A.: Combining hard and soft decoders for hypergraph product codes. Quantum 5, 432 (2021)

    Article  Google Scholar 

  19. Roffe, J., White, D.R., Burton, S., Campbell, E.T.: Decoding across the quantum LDPC code landscape (2020). arXiv:2005.07016

  20. Fossorier, M.P.C., Lin, S.: Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans. Inf. Theory 41(5), 1379–1396 (1995)

    Article  Google Scholar 

  21. Panteleev, P., Kalachev, G.: Degenerate quantum LDPC codes with good finite length performance (2019). arXiv:1904.02703

  22. Richardson, T., Urbanke, R.: Multi-edge type LDPC codes. In: Workshop honoring, Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena, California. Springer (2002)

    Google Scholar 

  23. Liao, S.K., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editor for their comments that improved the quality of this paper. This work is support by Scientific Project of Xinjiang Electric Power Co., Ltd. of SGCC under Grant No. SGXJXT00JFJS2000097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, W. et al. (2022). A Data Reconciliation Model Based on QLDPC for Satellite-Ground Quantum Key Distribution Network. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13340. Springer, Cham. https://doi.org/10.1007/978-3-031-06791-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06791-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06790-7

  • Online ISBN: 978-3-031-06791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics