Skip to main content

Efficient Fragile Privacy-Preserving Audio Watermarking Using Homomorphic Encryption

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13340))

Included in the following conference series:

  • 1466 Accesses

Abstract

Audio has become increasingly important in modern social communication and mobile Internet. In cloud computing, practical cloud-based applications should achieve high computation efficiency and secure data protection simultaneously. In this paper, we study the application of an efficient encrypted audio fragile watermarking using homomorphic encryption and the batching technique SIMD in cloud computing. We firstly implement the algorithm of Haar wavelet transform in the encrypted domain (BS-HWT) using the batching technique SIMD with the fully homomorphic encryption scheme CKKS. By performing BS-HWT on the encrypted audio, we transform the encrypted audio signal into the encrypted frequency-domain coefficients. The encrypted fragile watermark is then embedded into the encrypted discrete wavelet transform domain. Our experimental results show that the proposed watermarking scheme is highly efficient and sensitive to common audio attacks. We also present the proposed scheme has a good ability of tamper localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bianchi, T., Piva, A., Barni, M.: Encrypted domain DCT based on homomorphic cryptosystems. EURASIP J. Inf. Secur. 2009, 1 (2009)

    Article  Google Scholar 

  2. Bianchi, T., Piva, A.: Secure watermarking for multimedia content protection: a review of its benefits and open issues. IEEE Signal Process. Magaz. 30(2), 87–96 (2013)

    Article  Google Scholar 

  3. Bianchi, T., Piva, A., Barni, M.: On the implementation of the discrete fourier transform in the encrypted domain. IEEE Trans. Inf. Forens. Secur. 4(1), 86–97 (2009)

    Article  Google Scholar 

  4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

  5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) IWE. SIAM J. Comput. 43(2), 831–871 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Zheng, P., Guo, J., Zhang, W., Huang, J.: A privacy-preserving multipurpose watermarking scheme for audio authentication and protection. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 86–91. IEEE (2018)

    Google Scholar 

  7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

  8. Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980)

    Article  Google Scholar 

  9. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03168-7_14

  10. Fu, Z., Xia, L., Liu, Y., Tian, Z.: Privacy-preserving content-aware search based on two-level index. Comput. Mater. Continua 59(2), 473–491 (2019)

    Article  Google Scholar 

  11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)

    Google Scholar 

  12. Guo, J., Zheng, P., Huang, J.: Efficient privacy-preserving anomaly detection and localization in bitstream video. In: IEEE Transactions on Circuits and Systems for Video Technology (2019)

    Google Scholar 

  13. Liu, Y., Peng, H., Wang, J.: Verifiable diversity ranking search over encrypted outsourced data. Comput. Mater. Continua 55, 37–57 (2018)

    Google Scholar 

  14. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM (2012)

    Google Scholar 

  15. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

  17. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_14

  18. PALISADE: PALISADE Lattice Cryptography Library (release 1.10.5) (2020). https://palisade-crypto.org/

  19. Wang, Q., Hu, S., Wang, J., Ren, K.: Secure surfing: privacy-preserving speeded-up robust feature extractor. In: 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), pp. 700–710. IEEE (2016)

    Google Scholar 

  20. Xiong, L., Shi, Y.: On the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing. Comput. Mater. Continua 55(3), 523–539 (2018)

    MathSciNet  Google Scholar 

  21. Zhang, Y., Zheng, P., Luo, W.: Privacy-preserving outsourcing computation of QR decomposition in the encrypted domain. In: 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 389–396. IEEE (2019)

    Google Scholar 

  22. Zheng, P., Huang, J.: Discrete wavelet transform and data expansion reduction in homomorphic encrypted domain. IEEE Trans. Image Process. 22(6), 2455–2468 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Science Foundation of Guangdong (2019A1515010746, 2022A1515011897), in part by the Science and Technology Projects in Guangzhou (202102080354), in part by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness (HNTS2022023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peijia Zheng or Hongmei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, R., Fang, X., Zheng, P., Liu, H., Lu, W., Luo, W. (2022). Efficient Fragile Privacy-Preserving Audio Watermarking Using Homomorphic Encryption. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13340. Springer, Cham. https://doi.org/10.1007/978-3-031-06791-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06791-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06790-7

  • Online ISBN: 978-3-031-06791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics