Skip to main content

An Efficient Certificate-Based Encryption Scheme Without Random Oracles

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13340))

Included in the following conference series:

  • 1350 Accesses

Abstract

Certificate-based encryption combines traditional public key encryption and identity-based encryption while preserving their features. Compared with other public key cryptosystems, the advantage of certificate-based encryption are: (1) solving the problems of certificate revocation in traditional PKI and third-party queries about certificate status, (2) providing more efficient PKI that requires fewer infrastructures, (3) overcoming the key escrow problem inherent in the identity-based encryption. In this paper, we propose an efficient certificate-based encryption scheme which meets the chosen-ciphertext security under the complexity assumption of the truncated decision q-augmented bilinear Diffie-Hellman exponent problem and the decision 1-bilinear Diffie-Hellman inversion problem in the standard model. The proposed scheme requires computing only one bilinear pairing in the standard model, our scheme enjoys better performance, especially on the computation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gentry, C.: Certificate-based encryption and the certificate revocation problem. In: Biham, E. (eds) Advances in Cryptology—EUROCRYPT 2003. EUROCRYPT 2003. Lecture Notes in Computer Science, vol. 2656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39200-9_17 (2003)

  2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: 1st ACM Conference on Communications and Computer Security, pp. 62–73. ACM, USA (1993)

    Google Scholar 

  3. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC’98, pp. 209–218. ACM, Holland (1998)

    Google Scholar 

  4. Boneh, D., Franklin, M.: Identity-based encryption from the Weil Pairing. In: Kilian, J. (eds) Advances in Cryptology—CRYPTO 2001. CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44647-8_13 (2001)

  5. Yum, D.H., Lee, P.J.: Identity-based cryptography in public key management. In: Katsikas, S.K., Gritzalis, S., López, J. (eds) Public Key Infrastructure. EuroPKI 2004. Lecture Notes in Computer Science, vol. 3093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25980-0_6 (2004)

  6. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, CS. (eds) Advances in Cryptology - ASIACRYPT 2003. ASIACRYPT 2003. Lecture Notes in Computer Science, vol. 2894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40061-5_29 (2003)

  7. Galindo, D., Morillo, P., Ràfols, C.: Breaking Yum and Lee generic constructions of certificate-Less and certificate-based encryption schemes. In: Atzeni A.S., Lioy A. (eds.) EuroPKI 2006, vol. 4043, pp. 81–91. Springer, Heidelberg (2006)

    Google Scholar 

  8. Lu., Y., Li, J., Xiao, J.: Generic construction of certificate-based encryption. In: the 9th International Conference for Young Computer Scientists, pp. 1518–1594. IEEE, China (2008)

    Google Scholar 

  9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J Cryptol 26, 80–101 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Public Key Cryptography-PKC’99, LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

    Google Scholar 

  11. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian J. (eds.) TCC 2005, LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

    Google Scholar 

  12. Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: a generic construction and efficient schemes. In: Vaudenay S. (eds.) PKC 2005, LNCS, vol. 3386, pp. 398–415. Springer, Heidelberg (2005)

    Google Scholar 

  13. Kang, B.G., Park, J.H.: Is it possible to have CBE from CL-PKE?. Cryptology ePrint Archive (2005)

    Google Scholar 

  14. Yum, D.H., Lee, P.J.: Separable implicit certificate revocation. In: Park C., Chee S. (eds.) 7th International Conference on Information Security and Cryptology, LNCS, vol. 3506, pp. 121–136. Springer, Heidelberg (2005)

    Google Scholar 

  15. Park, J.H., Lee, D.H.: On the security of status certificate-based encryption scheme. IEICE Trans. Fundamentals E90A(1), 303–304 (2007)

    Article  Google Scholar 

  16. Morillo, P., Ràfols, C.: Certificate-based encryption without random oracles. Cryptology ePrint Archive (2006)

    Google Scholar 

  17. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer R. (eds.) Advances in Cryptology-Eurocrypt’2005, LNSC, vol. 3494, pp. 114-127. Springer, Heidelberg (2005)

    Google Scholar 

  18. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Advances in Cryptology-Eurocrypt’04, LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  19. Galindo, D., Morillo, P., Ràfols, C.: Improved certificate-based encryption in the standard model. J. Syst. Softw. 81(7), 1218–1226 (2008)

    Article  Google Scholar 

  20. Liu, J. K., Zhou, J.: Efficient certificate-based encryption in the standard model. In: Visconti I. (eds.) SCN 2008, LNCS, vol. 5229, pp. 144–155. Springer, Heidelberg (2008)

    Google Scholar 

  21. Gentry, C.: Practical identity-based encryption without random oracles. In: Advances in Cryptology-EUROCRYPT’06, LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)

    Google Scholar 

  22. Lu, Y., Li, J., Xiao, J.: Constructing efficient certificate-based encryption with paring. J. Comput. 4(1), 19–26 (2009)

    Article  Google Scholar 

  23. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve. Cryptology ePrint Archive (2003)

    Google Scholar 

  24. Chen, L.Q., Cheng, Z.H.: Security proof of Sakai-Kasahara’s identity-based encryption scheme. In: Smart N.P. (eds.) Cryptography and Coding 2005, LNCS, vol. 3796, pp. 442–459. Springer, Heidelberg (2005)

    Google Scholar 

  25. Hwang, Y., Lee, I.: A lightweight certificate-based aggregate signature scheme providing key insulation. Comp. Mater. Contin. 69(2), 1747–1764 (2021)

    Google Scholar 

  26. Li, L., Xu, C., Yu, X., Dou, B., Zuo, C.: Searchable encryption with access control on keywords in multi-user setting. Journal of Cyber Security 2(1), 9–23 (2020)

    Article  Google Scholar 

  27. Ali, M., Xu, C., Hussain, A.: Authorized attribute-based encryption multi-keywords search with policy updating. Journal of New Media 2(1), 31–43 (2020)

    Article  Google Scholar 

  28. Xu, C., Mei, L., Cheng, J., Zhao, Y., Zuo, C.: IoT services: realizing private real-time detection via authenticated conjunctive searchable encryption. Journal of Cyber Security 3(1), 55–67 (2021)

    Article  Google Scholar 

  29. Alameen, A.: Repeated attribute optimization for big data encryption. Comput. Syst. Sci. Eng. 40(1), 53–64 (2022)

    Article  Google Scholar 

  30. Kiltz, E., Vahlis, Y.: CCA2 secure IBE: standard model efficiency through authenticated symmetric encryption. In: Malkin T. (eds.) Cryptographer’s Track at RSA Conference 2008, LNCS, vol. 4964, pp. 221–238. Springer, Heidelberg (2008)

    Google Scholar 

  31. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto T. (eds.) Advances in Cryptology-ASIACRYPT 2000, LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

    Google Scholar 

  32. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MathSciNet  Google Scholar 

  33. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of operation for efficient authenticated encryption. In: 8th ACM conference on Computer and Communications Security, pp. 196–205. ACM, USA (2001)

    Google Scholar 

  34. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Advances in Cryptology-CRYPTO 2002, LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61772009, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, L., Lu, Y., Miao, Q., Zu, G., Wang, Z. (2022). An Efficient Certificate-Based Encryption Scheme Without Random Oracles. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13340. Springer, Cham. https://doi.org/10.1007/978-3-031-06791-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06791-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06790-7

  • Online ISBN: 978-3-031-06791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics