Skip to main content

Deep Learning Feature-Based Method for FY3 Image Inpainting

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13338))

Included in the following conference series:

  • 1503 Accesses

Abstract

The atmospheric ozone layer plays an important role in the interaction of extraterrestrial environmental systems. Obtaining complete ozone data can help relevant scientific researchers better analyze the state of the ozone layer and predict its impact on global or local climate. Due to the operating orbit and other factors, the polar weather satellite may lose some data when collecting data. We use an encoder-decoder convolutional neural network to repair missing data, and use a discriminant network to judge the quality of the data. The model showed amazing performance on a test set that was not related to the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shine, K.P.: Atmospheric ozone and climate change. Ozone Sci. Eng. 23(6), 429–435 (2001)

    Article  Google Scholar 

  2. Aslam, B., et al.: Ozone depletion identification in stratosphere through faster region-based convolutional neural network. Computers, Materials & Continua 68(2), 2159–2178 (2021)

    Article  Google Scholar 

  3. Wang, W.H., et al.: Analysis for retrieval and validation results of FY-3 Tatal Ozone Unit (TOU). Chin. Sci. Bull 17(55), 1726–1733 (2010)

    Article  Google Scholar 

  4. Dong, C., et al.: An overview of a new chinese weather satellite FY-3A. Bull. Am. Meteor. Soc. 90(10), 1531–1544 (2009)

    Article  Google Scholar 

  5. Wang, Y.M., et al.: FY-3 satellite ultraviolet total ozone detector. Bull. Am. Meteor. Soc. 23, 3778–3783 (2009)

    Google Scholar 

  6. Isola, P., et al.: Image-to-image translation with conditional adversarial networks, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  7. Liu, Q., Xiang, X., Qin, J., Tan, Y., Tan, J., Luo, Y.: Coverless steganography based on image retrieval of DenseNet features and DWT sequence mapping. Knowl.-Based Syst. 192, 105375–105389 (2020)

    Article  Google Scholar 

  8. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  9. Zhang, J., Qi, X., Myint, S.H., Wen, Z.: Deep-learning-empowered 3d reconstruction for dehazed images in iotenhanced smart cities. Computers, Materials & Continua 69(2), 2809 (2021)

    Google Scholar 

  10. Bertalmio, M., et al.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

    Google Scholar 

  11. Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)

    Article  Google Scholar 

  12. Chen, J., Zhou, Z., Pan, Z., Yang, C.: Instance retrieval using region of interest based cnn features. Journal of New Media 1(2), 87–99 (2019)

    Article  Google Scholar 

  13. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, L., Geoffrey, E.H.: Imagenet classification with deep convolutional neural networks. Adv. neural Info. Process. Sys. 25, 1097–1105 (2012)

    Google Scholar 

  15. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  17. Radford, A., Luke, M., Soumith, C.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv 1511(06434) (2015)

    Google Scholar 

  18. Hu, X., et al.: A semantic supervision method for abstractive summarization. Computers, Materials & Continua 69(1), 145–158 (2021)

    Google Scholar 

  19. Yu, T., et al.: Region normalization for image inpainting. Proc. AAAI Conf. Artif. Intell. 34(07), 12733–12740 (2020)

    Google Scholar 

  20. Nazeri, K., et al.: Edgeconnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv 1901(00212) (2019)

    Google Scholar 

  21. Van Der, A.R.J., Allaart, M.A.F., Eskes, H.J.: Multi sensor reanalysis of total ozone. Atmos. Chem. Phys. 10(22), 11277–11294 (2010)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv 1412(6980) (2014)

    Google Scholar 

  23. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Yu, I., et al.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  25. Liu, G., et al.: Image inpainting for irregular holes using partial convolutions. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 85–100 (2018)

    Google Scholar 

Download references

Funding

This study is supported by the National Key R&D Program of China (Grant No. 2020YFA0608004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinrong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, L., Huang, F., Zhang, Y., Hu, J. (2022). Deep Learning Feature-Based Method for FY3 Image Inpainting. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13338. Springer, Cham. https://doi.org/10.1007/978-3-031-06794-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06794-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06793-8

  • Online ISBN: 978-3-031-06794-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics