Skip to main content

An Alphapose-Based Pedestrian Fall Detection Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13338))

Included in the following conference series:

  • 2007 Accesses

Abstract

In order to identify the falling behavior quickly and accurately from the surveillance video, an optimized model of alphapose is proposed here. First, the pedestrian target detection model and pose estimation model are accelerated by the lightweight YOLOv4-tiny model that we adopted. Then, the human pose joint point coordinate data obtained by the alphapose model is used to judge the occurrence of a falling action by the proposed judging algorithm. We use relationship between the head joint point line velocity and the crotch joint line velocity at the moment of a human fall and the change of angle between the perpendicular bisector and the x-axis of the image to judge the occurrence of the fall action. The algorithm proposed in this paper was compared with the main human posture-based fall detection algorithms for comparative analysis, with an image resolution of 320 × 240. The results show that the model proposed in this paper can timely and accurately detect the occurrence of pedestrian fall behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yin, J., Yang, Q.: Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 20(8), 1092–1099 (2008)

    Google Scholar 

  2. Khan, A.M., Lee, Y.K., Lee, S.Y., Kim, T.S.: A Triaxial accelerometer-based physical- activity recognition via augmented-signal features and a hierarchical recognizer. Inf. Technol. Biomed. IEEE Trans. 14(5), 1166–1172 (2010)

    Article  Google Scholar 

  3. Sigg, S., Scholz, M., Shi, S., Ji, Y.: RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals. IEEE Trans. Mob. Comput. 13(4), 907–920 (2014)

    Article  Google Scholar 

  4. Wang, X., Gao, L., Wang, P., Sun, X., Liu, X.: Two-stream 3-d convnet fusion for action recognition in videos with arbitrary size and length. IEEE Trans. Multimed. 20(3), 634–644 (2017)

    Article  Google Scholar 

  5. Arif, S., Wang, J., Ul Hassan, T., Fei, Z.: 3D-CNN-based fused feature maps with LSTM applied to action recognition. Future Int. 11(2), 42 (2019)

    Article  Google Scholar 

  6. Kong, Y., Huang, J., Huang, S., Wei, Z., Wang, S.: Learing spatiotemporal representations for human fall detection in surveillance video. J. Vis. Commun. Image Represent. 59, 215–230 (2019)

    Article  Google Scholar 

  7. Espinosa, R., Ponce, H., Gutiérrez, S., Martínez-Villaseñor, L., Brieva, J., Moya-Albor, E.: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the UP-Fall detection dataset. Computer. Biol. Med. 115, 103520 (2019)

    Article  Google Scholar 

  8. Xu, T., Zhou, Y.: Elders’ fall detection based on biomechanical features using depth camera. Int. J. Wavelets, Multires. Inf. Process. 16(02), 1840005 (2018)

    Article  Google Scholar 

  9. Kaihoko, Y., Tan, P.X., Kamioka, E.: Prevention of unintended appearance in photos based on human behavior analysis. Information 11(10), 468 (2020)

    Article  Google Scholar 

  10. Thacker, C.B., Makwana, R.M.: Human behavior analysis through facial expression recognition in images using deep learning. Int. J. Innov. Technol. Exp. Eng. 9(2), 391–397 (2019)

    Google Scholar 

  11. Xu, Q., Zheng, W., Song, Y., Zhang, C., Yuan, X., Li, Y.: Scene image and human skeleton-based dual-stream human action recognition. Pattern Recogn. Lett. 148, 136–145 (2021)

    Article  Google Scholar 

  12. Athavale, V.A., Gupta, S.C.: Human action recognition using CNN-SVM model. Adv. Sci. Technol. 6258, 282–290 (2021)

    Article  Google Scholar 

  13. Bulbul, M.F., Ali, H.: Gradient local auto-correlation features for depth human action recognition. SN Appl. Sci. 3(5), 1–13 (2021)

    Article  Google Scholar 

  14. Saifuddin, S.F.M., Shaahriar, K.A.: Silhouette pose feature-based human action classification using capsule network. J. Inf. Technol. Res. 14(12), 106–124 (2021)

    Google Scholar 

  15. Zhdanova, M.M., Balabaeva, O.S.: Improvement of the human action recognition algorithm by the pre-processing of input data. In: IOP Conference Series: Materials Science and Engineering vol. 1029, no. 1, pp. 12119–12119 (2021)

    Google Scholar 

  16. Suresh, K.B., Viswanadha, R.S.: Human action recognition using a novel deep learning approach. In: IOP Conference Series: Materials Science and Engineering. Vol. 1042, no. 1, p. 012031 (2021)

    Google Scholar 

  17. Hao, X., Li, J., Jiang, T., Yu, M.: Hypergraph neural network for skeleton-based action recognition. IEEE Trans. Image Process. 30, 2263–2275 (2021)

    Article  MathSciNet  Google Scholar 

  18. Xu, J. and Luo, Q.: Human action recognition based on mixed gaussian hidden markov model. In: MATEC Web of Conferences, vol. 336, p. 06004. EDP Sciences (2021)

    Google Scholar 

  19. Sargano, A.B., Gu, X., Angelov, P., Habib, Z.: Human action recognition using deep rule-based classifier. Multimedia Tools Appl. 79(41), 30653–30667 (2020)

    Article  Google Scholar 

  20. Ramya, P., Rajeswari, R.: Human action recognition using distance transform and entropy based features. Multimedia Tools Appl. 80(6), 8147–8173 (2020)

    Article  Google Scholar 

  21. Latha, B., Latha, B.M., Manjula, B.K., Sumana, V., Hemalatha, C.H.: Human action recognition using stip evaluation techniques. IOP Conf. Series: Mater. Sci. Eng. 925(1), 12026–12026 (2020)

    Article  Google Scholar 

  22. Abdelbaky, A., Aly, S.: Two-stream spatiotemporal feature fusion for human action recognition. Vis. Comput. 37(7), 1821–1835 (2021)

    Article  Google Scholar 

  23. Berlin, S.J., John, M.: R-STDP based spiking neural network for human action recognition. Appl. Artifi. Intell. 34(9), 656–673 (2020)

    Article  Google Scholar 

  24. Mishra, S.R., Mishra, T.K., Sanyal, G., Sarkar, A., Satapathy, S.C.: Real time human action recognition using triggered frame extraction and a typical CNN heuristic. Pattern Recogn. Lett. 135, 329–336 (2020)

    Article  Google Scholar 

  25. Khan, K., Ali, J., Ahmad, K., Gul, A., Sarwar, G.: 3d head pose estimation through facial features and deep convolutional neural networks. Comput. Mater. Continua 66(2), 1757–1770 (2021)

    Article  Google Scholar 

  26. Rehman, M.U., Ahmed, F., Khan, M.A., Tariq, U., Alfouzan, F.A.: Dynamic hand gesture recognition using 3d-cnn and lstm networks. Comput. Mater. Continua 70(3), 4675–4690 (2022)

    Article  Google Scholar 

  27. Anitha, G., Priya, S.B.: Vision based real time monitoring system for elderly fall event detection using deep learning. Comput. Syst. Sci. Eng. 42(1), 87–103 (2022)

    Article  Google Scholar 

  28. Zou, J., Zhu, N., Ge, B., Hong, D.: Elderly fall detection based on improved SSD algorithm. J. New Media 3(1), 1–10 (2021)

    Article  Google Scholar 

  29. Wang, J., Feng, S., Cheng, Y., Al-Nabhan, N.: Survey on the loss function of deep learning in face recognition. J. Inf. Hiding Privacy Protect. 3(1), 29–45 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanxing Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Hou, F., Su, J., Davis, L. (2022). An Alphapose-Based Pedestrian Fall Detection Algorithm. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13338. Springer, Cham. https://doi.org/10.1007/978-3-031-06794-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06794-5_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06793-8

  • Online ISBN: 978-3-031-06794-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics