Skip to main content

Formalizing Digital Proprioception for Devices, Environments, and Users

  • Conference paper
  • First Online:
Ambient Intelligence – Software and Applications – 12th International Symposium on Ambient Intelligence (ISAmI 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 483))

Included in the following conference series:

Abstract

We discuss the concept of digital proprioception for smart devices and smart environments, which we formalize and operationalize in the context of Ambient Intelligence with a dedicated event-driven software architecture. We also propose extended digital proprioception, by means of which devices and environments can access supplementary information about themselves from other sources, beyond their internal sensing capabilities. We use the latter concept to propose extended human proprioception enabled by the conjoint operation of smart devices and environments. Our contributions enable a new way to conceptualize interactions in smart environments by designing user experiences mediated by spatial communication interfaces where physical space integrates interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, both Samsung Gear Fit 2 (https://www.samsungmobilepress.com/mediaresources/gear-fit2/techspecs) and Galaxy Watch 3 smartwatches (https://www.samsung.com/global/galaxy/galaxy-watch3/specs) embed accelerometers and gyroscopes, but the Gear Fit 2 model does not have a light sensor.

  2. 2.

    Euphoria is available at http://www.eed.usv.ro/mintviz/resources/Euphoria.

References

  1. Ahuja, K., Kong, A., Goel, M., Harrison, C.: Direction-of-voice (DoV) estimation for intuitive speech interaction with smart devices ecosystems. In: Proceedings of the UIST 2020, pp. 1121–1131. ACM (2020). https://doi.org/10.1145/3379337.3415588

  2. Aman, J., Elangovan, N., Yeh, I., Konczak, J.: The effectiveness of proprioceptive training for improving motor function: a systematic review. Front. Hum. Neurosci. 8, 1075 (2015). https://doi.org/10.3389/fnhum.2014.01075

  3. Anderson-Barnes, V.C., McAuliffe, C., Swanberg, K.M., Tsao, J.W.: Phantom limb pain-a phenomenon of proprioceptive memory? Med. Hypotheses 73(4), 555–558 (2009). https://doi.org/10.1016/j.mehy.2009.05.038

  4. Bakker, S., Hausen, D., Selker, T. (eds.): Peripheral Interaction. HIS, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29523-7

    Book  Google Scholar 

  5. Bieber, G., Kirste, T., Urban, B.: Ambient interaction by smart watches. In: Proceedings of the PETRA 2012. ACM (2012). https://doi.org/10.1145/2413097.2413147

  6. Blank, A., Okamura, A.M., Kuchenbecker, K.J.: Identifying the role of proprioception in upper-limb prosthesis control: studies on targeted motion. ACM Trans. Appl. Percept. 7(3) (2008). https://doi.org/10.1145/1773965.1773966

  7. Brown, B., O’Hara, K., Kindberg, T., Williams, A.: Crowd computer interaction. In: Proceedings of the CHI 2009 EA, pp. 4755–4758. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1520340.1520733

  8. Chen, X.A., Schwarz, J., Harrison, C., Mankoff, J., Hudson, S.: Around-body interaction: sensing & interaction techniques for proprioception-enhanced input with mobile devices. In: Proceedings of the MobileHCI 2014 (2014). https://doi.org/10.1145/2628363.2628402

  9. Clinch, S.: Smartphones and pervasive public displays. IEEE Pervasive Comput. 12(1), 92–95 (2013). https://doi.org/10.1109/MPRV.2013.16

  10. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009). https://doi.org/10.1016/j.pmcj.2009.04.001

  11. Coppers, S., Vanacken, D., Luyten, K.: FORTNIoT: intelligible predictions to improve user understanding of smart home behavior. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(4), 1–24 (2020). https://doi.org/10.1145/3432225

  12. Evarts, E.V.: Sherrington’s concept of proprioception. Trends Neurosci. 4, 44–46 (1981). https://doi.org/10.1016/0166-2236(81)90016-3

  13. Gheran, B.F., Vanderdonckt, J., Vatavu, R.D.: Gestures for smart rings: empirical results, insights, and design implications. In: Proceedings of the DIS 2018, pp. 623–635. ACM (2018). https://doi.org/10.1145/3196709.3196741

  14. Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R., Wang, M.: Proxemic interactions: the new ubicomp? Interactions 18(1), 42–50 (2011). https://doi.org/10.1145/1897239.1897250

  15. Guinea, A.S., Boytsov, A., Mouline, L., Le Traon, Y.: Continuous identification in smart environments using wrist-worn inertial sensors. In: Proceedings of the MobiQuitous 2018, pp. 87–96. ACM (2018). https://doi.org/10.1145/3286978.3287001

  16. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the UIST 2011, pp. 559–568. ACM (2011). https://doi.org/10.1145/2047196.2047270

  17. Kerber, F., Gehring, S., Krüger, A., Löchtefeld, M.: Adding expressiveness to smartwatch notifications through ambient illumination. Int. J. Mob. Hum. Comput. Interact. 9(4) (2017). http://dx.doi.org/10.4018/IJMHCI.2017100101

  18. Kim, N., Lee, J.: Towards grip sensing for commodity smartphones through acoustic signature. In: Proceedings of the UbiComp 2017 (2017). https://doi.org/10.1145/3123024.3123090

  19. Lawson, J.Y.L., Vanderdonckt, J., Vatavu, R.D.: Mass-computer interaction for thousands of users and beyond. In: Proceedings of the CHI EA 2018, pp. 1–6. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3170427.3188465

  20. Li, F.C.Y., Dearman, D., Truong, K.N.: Virtual shelves: interactions with orientation aware devices. In: Proceedings of the UIST 2009 (2009). https://doi.org/10.1145/1622176.1622200

  21. Lopes, P.: Proprioceptive interaction: the user’s muscles as input and output device. In: Proceedings of the CHI EA 2016. ACM (2016). https://doi.org/10.1145/2851581.2859014

  22. Lopes, P., Ion, A., Mueller, W., Hoffmann, D., Jonell, P., Baudisch, P.: Proprioceptive interaction. In: Proceedings of the CHI 2015 (2015). https://doi.org/10.1145/2702123.2702461

  23. Lou, Y., Wu, W., Vatavu, R.D., Tsai, W.T.: Personalized gesture interactions for cyber-physical smart-home environments. Sci. China Inf. Sci. 60(7), 072104:1–15 (2017). http://dx.doi.org/10.1007/s11432-015-1014-7

  24. Marquardt, N., Diaz-Marino, R., Boring, S., Greenberg, S.: The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In: Proceedings of the UIST 2011, pp. 315–326. ACM (2011). https://doi.org/10.1145/2047196.2047238

  25. Noura, M., Heil, S., Gaedke, M.: Natural language goal understanding for smart home environments. In: IoT 2020 (2020). https://doi.org/10.1145/3410992.3410996

  26. Pamparau, C., Vatavu, R.: FlexiSee: flexible configuration, customization, and control of mediated and augmented vision for users of smart eyewear devices. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-020-10164-5

  27. Pearce, J.: Sir Charles Scott Sherrington (1857–1952) and the synapse. J. Neurol. Neurosurg. Psychiatr. 75(4), 544 (2004). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1739021/

  28. Popovici, I., Schipor, O.A., Vatavu, R.D.: Hover: exploring cognitive maps and mid-air pointing for television control. Int. J. Hum.-Comput. Stud. 129, 95–107 (2019). https://doi.org/10.1016/j.ijhcs.2019.03.012

  29. Proske, U., Gandevia, S.C.: The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012). https://doi.org/10.1152/physrev.00048.2011

  30. Rand, D.: Proprioception deficits in chronic stroke–Upper extremity function and daily living. PLoS One 13 (2018). http://dx.doi.org/10.1371/journal.pone.0195043

  31. Schipor, O.A., Vatavu, R.D.: Invisible, inaudible, and impalpable: users’ preferences and memory performance for digital content in thin air. IEEE Pervasive Comput. 17(4), 76–85 (2018). https://doi.org/10.1109/MPRV.2018.2873856

  32. Schipor, O.A., Vatavu, R.D., Vanderdonckt, J.: Euphoria: a scalable, event-driven architecture for designing interactions across heterogeneous devices in smart environments. Inf. Softw. Technol. 109, 43–59 (2019). https://doi.org/10.1016/j.infsof.2019.01.006

  33. Schipor, O.A., Vatavu, R.D., Wu, W.: Integrating peripheral interaction into augmented reality applications. In: Proceedings of the ISMAR 2019 Adjunct, pp. 358–359. IEEE Press (2019). http://dx.doi.org/10.1109/ISMAR-Adjunct.2019.00-12

  34. Schipor, O.A., Vatavu, R.D., Wu, W.: SAPIENS: towards software architecture to support peripheral interaction in smart environments. Proc. ACM Hum.-Comput. Interact. 3(EICS) (2019). https://doi.org/10.1145/3331153

  35. Schipor, O.A., Wu, W., Tsai, W.T., Vatavu, R.D.: Software architecture design for spatially-indexed media in smart environments. Adv. Electr. Comput. Eng. 17(2), 17–22 (2017). https://doi.org/10.4316/AECE.2017.02003

  36. Streitz, N., Charitos, D., Kaptein, M., Böhlen, M.: Grand challenges for ambient intelligence and implications for design contexts and smart societies. J. Ambient Intell. Smart Environ. 11(1), 87–107 (2019). http://dx.doi.org/10.3233/AIS-180507

  37. Tian, Y., Bai, Y., Zhao, S., Fu, C.W., Yang, T., Heng, P.A.: Virtually-extended proprioception: providing spatial reference in vr through an appended virtual limb. In: Proceedings of the CHI 2020, pp. 1–12 (2020). https://doi.org/10.1145/3313831.3376557

  38. Tuthill, J.C., Azim, E.: Proprioception. Curr. Biol. 28(5), R194–R203 (2018). https://doi.org/10.1016/j.cub.2018.01.064

  39. Vatavu, R.D.: Nomadic gestures: a technique for reusing gesture commands for frequent ambient interactions. J. Ambient Intell. Smart Environ. 4(2), 79–93 (2012). http://dx.doi.org/10.3233/AIS-2012-0137

  40. Vatavu, R.D.: Audience silhouettes: peripheral awareness of synchronous audience kinesics for social television. In: Proceedings of the TVX 2015, pp. 13–22. ACM, New York, NY, USA (2015). https://doi.org/10.1145/2745197.2745207

  41. Vatavu, R.D.: Smart-pockets: body-deictic gestures for fast access to personal data during ambient interactions. Int. J. Hum.-Comput. Stud. 103, 1–21 (2017). http://dx.doi.org/10.1016/j.ijhcs.2017.01.005

  42. Vatavu, R.D., Chera, C.M., Tsai, W.T.: Gesture profile for web services: an event-driven architecture to support gestural interfaces for smart environments. In: Proceedings of the AmI 2012, pp. 161–176 (2012). http://dx.doi.org/10.1007/978-3-642-34898-3_11

  43. Weiser, M., Brown, J.S.: Designing calm technology. PowerGrid J. 1, 75–85 (1996)

    Google Scholar 

  44. Wiese, J., Saponas, T.S., Brush, A.B.: Phoneprioception: enabling mobile phones to infer where they are kept. In: Proceedings of the CHI 2013, pp. 2157–2166. ACM (2013). https://doi.org/10.1145/2470654.2481296

  45. Wilson, A.D., Benko, H.: CrossMotion: fusing device and image motion for user identification, tracking and device association. In: Proceedings of the ICMI 2014, pp. 216–223. ACM (2014). https://doi.org/10.1145/2663204.2663270

Download references

Acknowledgement

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI, project number PN-III-P4-ID-PCE-2020-0434 (PCE29/2021), within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu-Daniel Vatavu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vatavu, RD., Schipor, OA. (2022). Formalizing Digital Proprioception for Devices, Environments, and Users. In: Novais, P., Carneiro, J., Chamoso, P. (eds) Ambient Intelligence – Software and Applications – 12th International Symposium on Ambient Intelligence. ISAmI 2021. Lecture Notes in Networks and Systems, vol 483. Springer, Cham. https://doi.org/10.1007/978-3-031-06894-2_1

Download citation

Publish with us

Policies and ethics