Skip to main content

Improved Approximations for Capacitated Vehicle Routing with Unsplittable Client Demands

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13265))

Abstract

In this paper, we present improved approximation algorithms for the (unsplittable) Capacitated Vehicle Routing Problem (CVRP) in general metrics. In CVRP, introduced by Dantzig and Ramser (1959), we are given a set of points (clients) V together with a depot r in a metric space, with each \(v\in V\) having a demand \(d_v>0\), and a vehicle of bounded capacity Q. The goal is to find a minimum cost collection of tours for the vehicle, each starting and ending at the depot, such that each client is visited at least once and the total demands of the clients in each tour is at most Q. In the unsplittable variant we study, the demand of a node must be served entirely by one tour. We present two approximation algorithms for unsplittable CVRP: a combinatorial \((\alpha +1.75)\)-approximation, where \(\alpha \) is the approximation factor for the Traveling Salesman Problem, and an approximation algorithm based on LP rounding with approximation guarantee \(\alpha +\ln (2) + \delta \approx 3.194 + \delta \) in \(n^{O(1/\delta )}\) time. Both approximations can further be improved by a small amount when combined with recent work by Blauth, Traub, and Vygen (2021), who obtained an \((\alpha + 2\cdot (1 -\varepsilon ))\)-approximation for unsplittable CVRP for some constant \(\varepsilon \) depending on \(\alpha \) (\(\varepsilon > 1/3000\) for \(\alpha = 1.5\)).

Z. Friggstad—Supported by an NSERC Discovery Grant and Accelerator Supplement

M.R. Salavatipour—Supported by NSERC

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One can show using that restricting the demand served to each client by each tour to integer quantities does not change the optimum solution cost.

  2. 2.

    A set of edges M that may contain loops is a perfect matching if each node lies in precisely one edge: so a node is either matched with another node via a normal edge or with itself via a loop.

References

  1. Adamaszek, A., Czumaj, A., Lingas, A.: PTAS for k-tour cover problem on the plane for moderately large values of k. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 994–1003. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6_100

    Chapter  Google Scholar 

  2. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with a fixed error guarantee. Oper. Res. Lett. 6(4), 149–158 (1987). https://www.sciencedirect.com/science/article/pii/0167637787900125

  3. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MathSciNet  Google Scholar 

  4. Asano, T., Katoh, N., Tamaki, H., Tokuyama, T.: Covering points in the plane by k-tours: Towards a polynomial time approximation scheme for general k. In: 29th ACM Symposium on the Theory of Computing (STOC), pp. 275–283 (1997)

    Google Scholar 

  5. Becker, A.: A tight 4/3 approximation for capacitated vehicle routing in trees. In: 21st International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pp. 3:1–3:15 (2018)

    Google Scholar 

  6. Becker, A., Klein, P.N., Saulpic, D.: A quasi-polynomial-time approximation scheme for vehicle routing on planar and bounded-genus graphs. In: 25th Annual European Symposium on Algorithms (ESA), pp. 12:1–12:15 (2017)

    Google Scholar 

  7. Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for k-center, k-median, and capacitated vehicle routing in bounded highway dimension. In: 26th Annual European Symposium on Algorithms (ESA), pp. 8:1–8:15 (2018)

    Google Scholar 

  8. Becker, A., Klein, P.N., Schild, A.: A PTAS for bounded-capacity vehicle routing in planar graphs. In: 16th International Algorithms and Data Structures Symposium (WADS), pp. 99–111 (2019)

    Google Scholar 

  9. Becker, A., Paul, A.: A framework for vehicle routing approximation schemes in trees. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 112–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_9

    Chapter  Google Scholar 

  10. Blauth, J., Traub, V., Vygen, J.: Improving the approximation ratio for capacitated vehicle routing. In: Singh, M., Williamson, D.P. (eds.) IPCO 2021. LNCS, vol. 12707, pp. 1–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73879-2_1

    Chapter  Google Scholar 

  11. Cohen-Addad, V., Filtser, A., Klein, P.N., Le, H.: On light spanners, low-treewidth embeddings and efficient traversing in minor-free graphs. In: 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 589–600 (2020)

    Google Scholar 

  12. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

    Article  MathSciNet  Google Scholar 

  13. Das, A., Mathieu, C.: A quasipolynomial time approximation scheme for euclidean capacitated vehicle routing. Algorithmica 73(1), 115–142 (2015). https://doi.org/10.1007/s00453-014-9906-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M.R.: Improved approximations for cvrp with unsplittable demands (2021). arXiv preprint arXiv:2111.08138

  15. Gabow, H.N.: An efficient implementation of edmonds’ algorithm for maximum matching on graphs. J. ACM (JACM) 23(2), 221–234 (1976)

    Article  MathSciNet  Google Scholar 

  16. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–315 (1981)

    Article  MathSciNet  Google Scholar 

  17. Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing problems. Math. Oper. Res. 10(4), 527–542 (1985)

    Article  MathSciNet  Google Scholar 

  18. Hamaguchi, S., Katoh, N.: A capacitated vehicle routing problem on a tree. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 399–407. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6_42

    Chapter  Google Scholar 

  19. Jayaprakash, A., Salavatipour, M.R.: Approximation schemes for capacitated vehicle routing on graphs of bounded treewidth, bounded doubling, or highway dimension. In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms SODA (2022)

    Google Scholar 

  20. Khachay, M., Dubinin, R.: PTAS for the euclidean capacitated vehicle routing problem in \(R^d\). In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 193–205. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_16

    Chapter  Google Scholar 

  21. Khachay, M., Ogorodnikov, Y.: QPTAS for the CVRP with a moderate number of routes in a metric space of any fixed doubling dimension. In: Kotsireas, I.S., Pardalos, P.M. (eds.) LION 2020. LNCS, vol. 12096, pp. 27–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53552-0_4

    Chapter  MATH  Google Scholar 

  22. Khachay, M., Ogorodnikov, Y., Khachay, D.: An extension of the das and mathieu QPTAS to the case of polylog capacity constrained CVRP in metric spaces of a fixed doubling dimension. In: Kononov, A., Khachay, M., Kalyagin, V.A., Pardalos, P. (eds.) MOTOR 2020. LNCS, vol. 12095, pp. 49–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49988-4_4

    Chapter  MATH  Google Scholar 

  23. Labbé, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Oper. Res. 39(4), 616–622 (1991)

    Article  Google Scholar 

  24. Mathiue, C., Zhou, H.: A PTAS for Capacitated Vehicle Routing on Trees (2020). CoRR arXiv:2111.03735, https://arxiv.org/abs/2111.03735

  25. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Math. Oper. Res. 18(1), 1–11 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anonymous reviewer for pointing out that our approaches could be extended to the asymmetric metric setting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Mousavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friggstad, Z., Mousavi, R., Rahgoshay, M., Salavatipour, M. (2022). Improved Approximations for Capacitated Vehicle Routing with Unsplittable Client Demands. In: Aardal, K., Sanità, L. (eds) Integer Programming and Combinatorial Optimization. IPCO 2022. Lecture Notes in Computer Science, vol 13265. Springer, Cham. https://doi.org/10.1007/978-3-031-06901-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06901-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06900-0

  • Online ISBN: 978-3-031-06901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics