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Abstract

This paper considers the interplay between semidefinite programming, matrix rank, and graph col-
oring. Karger, Motwani, and Sudan [11] give a vector program for which a coloring of the graph can
be encoded as a semidefinite matrix of low rank. By complementary slackness conditions of semidefinite
programming, if an optimal dual solution has sufficiently high rank, any optimal primal solution must
have low rank. We attempt to characterize graphs for which we can show that the corresponding dual
optimal solution must have sufficiently high rank. In the case of the original Karger, Motwani, and Sudan
vector program, we show that any graph which is a k-tree has sufficiently high dual rank, and we can
extract the coloring from the corresponding low-rank primal solution. We can also show that if the graph
is not uniquely colorable, then no sufficiently high rank dual optimal solution can exist. This allows us
to completely characterize the planar graphs for which dual optimal solutions have sufficiently high dual
rank, since it is known that the uniquely colorable planar graphs are precisely the planar 3-trees.

We then modify the semidefinite program to have an objective function with costs, and explore when
we can create a cost function whose optimal dual solution has sufficiently high rank. We show that it is
always possible to construct such a cost function given the graph coloring. The construction of the cost
function gives rise to a heuristic for graph coloring which we show works well in the case of planar graphs;
we enumerated all maximal planar graphs with a K4 of up to 14 vertices, and the heuristics successfully
colored 99.75% of them.

Our research was motivated by the Colin de Verdière graph invariant [5] (and a corresponding con-
jecture of Colin de Verdière), in which matrices that have some similarities to the dual feasible matrices
must have high rank in the case that graphs are of a certain type; for instance, planar graphs have
rank that would imply the 4-colorability of the primal solution. We explore the connection between the
conjecture and the rank of the dual solutions.

1 Introduction

Given an undirected graph G = (V,E), a coloring of G is an assignment of colors to the vertices V such that
for each edge (i, j) ∈ E, i and j receive different colors. The chromatic number of G, denoted χ(G), is the
minimum number of colors used such that a coloring of G exists. The clique number of a graph G, denoted
ω(G), is the size of the largest clique in the graph; a set S ⊆ V of vertices is a clique if for every distinct pair
i, j ∈ S, (i, j) ∈ E. It is easy to see that ω(G) ≤ χ(G). Graph colorings have been intensively studied for
over a century. One of the most well-known theorems of graph theory, the four-color theorem, states that
four colors suffice to color any planar graph G; the problem of four-coloring a planar graph can be traced
back to the 1850s, and the computer-assisted proof of the four-color theorem by Appel and Haken [2, 3] is
considered a landmark in graph theory. See Jensen and Toft [10] and Molloy and Reed [14] for book-length
treatments of graph coloring in general. Fritsch and Fritsch [7], Ore [15], and Wilson [18] provide book-length
treatments of the four-color theorem in particular, and Robertson, Sanders, Seymour, and Thomas [16] give
a simplified computer-assisted proof of the four-color theorem.

This paper considers the use of semidefinite programming in graph coloring. The connection between
semidefinite programming and graph coloring was initiated by Lovász [13], who introduced the Lovász theta
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function, θ(Ḡ), which is computable via semidefinite programming; Ḡ is the complement of graph G, in
which all edges of G are replaced by nonedges and vice versa. Lovász showed that ω(G) ≤ θ(Ḡ) ≤ χ(G); a
helpful overview of this result was given by Knuth [12].

Another use of semidefinite programming for graph coloring was introduced by Karger, Motwani, and
Sudan [11] (KMS), who showed how to color k-colorable graphs with O(n1−3/(k+1) log1/2 n) colors in poly-
nomial time using semidefinite programming, where n is the number of vertices in the graph. A starting
point of the algorithm of KMS is the following vector program, which KMS called the strict vector chromatic
number; the vector program can be solved via semidefinite programming:

minimize α
subject to vi · vj = α, ∀(i, j) ∈ E,

vi · vi = 1, ∀i ∈ V,
vi ∈ Rn, ∀i ∈ V.

KMS observe that any k-colorable graph has a feasible solution to the vector program with α = −1/(k− 1):
let v1 = (1, 0, . . . , 0) ∈ ℜk−1 and inductively find vi ∈ ℜk−1 for 1 < i ≤ k − 1 by setting vi(j) = 0 for j > i
and otherwise solving the system of equations given by vl · vi = −1/(k− 1) for 1 ≤ l ≤ i− 1 and vi · vi = 1.

Finally, let vk = −
∑k−1

j=1 vj , then assign one color to each of the vectors vi. This guarantees that each vector
vi has unit length (so vi ·vi = 1) and that for any edge (i, j) ∈ E, vi ·vj = −1/(k−1). It is important for the
following discussion to observe that this solution lies in a (k− 1)-dimensional space. KMS also observe that
there is a natural connection between the strict vector chromatic number and the Lovász theta function. In
particular, for the solution α to the vector program above, it is possible to show that α = 1/(1− θ(Ḡ)) (see
[11, Theorem 8.2]). If the graph G has a k-clique Kk and is k-colorable, then by Lovász’s theorem, θ(Ḡ) = k,
and so the feasible solution with α = −1/(k − 1) is an optimal solution. It is also possible to argue directly
that a graph with a Kk must have α ≥ −1/(k− 1), again proving that the feasible solution given above is an
optimal one. We will call the feasible solution above (in which all the vectors are recursively constructed)
the reference solution.

The goal of this paper is to explore situations in which the reference solution is the unique optimal solution
of a semidefinite program (SDP), either the SDP corresponding to the strict vector chromatic number given
above, or another that we will give shortly. To do this, we will use complementary slackness conditions
for semidefinite programs. Consider the primal and dual SDPs shown in standard form below, where the
constraint that X is a positive semidefinite matrix is represented by X � 0, and we take the outer product
of matrices, so that C •X , for instance, denotes

∑ℓ
i=1

∑ℓ
j=1 cijxij .

minimize C •X maximize bT y
subject to Ai •X = bi for i = 1, . . . ,m, subject to S = C −

∑m
i=1 yiAi,

X � 0, S � 0,
X ∈ ℜℓ×ℓ, S ∈ ℜℓ×ℓ.

Duality theory for semidefinite programs (e.g. Alizadeh [1]) shows that for any feasible primal solution X
and any feasible dual solution y, C • X ≥ bT y. Furthermore if C • X = bT y, so that the solutions are
optimal, then it must be the case that rank(X) + rank(S) ≤ ℓ, and XS = 0. Thus if we want to show that
any optimal primal solution has rank at most r, it suffices to show the existence of an optimal dual solution
of rank at least ℓ−r. Turning back to the strict vector chromatic number vector program, the corresponding
dual vector program is

maximize −
∑

i vi · vi
subject to

∑

i6=j vi · vj ≥ 1,

vi · vj = 0, ∀(i, j) /∈ E, i 6= j
vi ∈ Rn, ∀i ∈ V.

Thus, given a k-colorable graph G with a Kk, if we can show a dual feasible solution of value −1/(k− 1) and
rank n− k + 1, then we know that the primal solution must have rank at most k − 1; we’ll show that this
will give us the reference solution1. We will for shorthand say that there is an optimal dual of sufficiently
high rank.

1There are some subtleties here we are glossing over in the interest of getting across the main idea. In particular, the SDP

corresponding to the strict vector chromatic number vector program has dimension n+1, not n; we explain why and why that

doesn’t matter for our purposes in Section 3.
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Our first result is to partially characterize the set of graphs for which the optimal solution to the strict
vector chromatic number vector program is the reference solution. In particular, we can show that if the
graph is a (k− 1)-tree, then the reference solution is the unique optimal solution to the SDP. In the opposite
direction, if the graph is not uniquely colorable, then the dual does not have sufficiently high rank, and
there exist optimal primal solutions that are not the reference solution and are at least k-dimensional. A
(k− 1)-tree is a graph constructed by starting with a complete graph on k vertices. We then iteratively add
vertices v; for each new vertex v, we add k−1 edges from v to previously added vertices such that v together
with these k−1 neighbors form a clique. A k-colorable graph is uniquely colorable if it has only one possible
coloring up to a permutation of the colors. The k-tree graphs are easily shown to be unique colorable. In
the case of planar graphs with a K4, these results imply a complete characterization of the graphs for which
the optimal solution is the reference solution, since it is known that the uniquely 4-colorable planar graphs
are exactly the planar 3-trees, also known as the Apollonian networks [6]. We argue that it is not surprising
that graphs are not uniquely k-colorable do not have the reference solution as the sole optimal solution; we
show that one can find a convex combination of the two different reference solutions corresponding to the
two different colorings that gives an optimal SDP solution of rank higher than k− 1, and clearly the convex
combination is also feasible for the SDP.

To get around the issue of unique colorability, we instead look for minimum-cost feasible solutions to the
SDP above. That is, given a cost matrix C, we look to find optimal solutions to the primal SDP

minimize C •X
subject to Xij = −1/(k − 1), ∀(i, j) ∈ E

Xii = 1, ∀i ∈ V
X � 0.

The corresponding dual SDP is

maximize
∑n

i=1 yi −
2

k−1

∑

e∈E ze
subject to S = C −

∑n
i=1 yiEii −

∑

e∈E zeEe

S � 0,

where Eii is the matrix with a 1 at position ii and 0 elsewhere and for e = (i, j), Ee is the matrix with 1 at
positions ij and ji and 0 elsewhere. Once again, the reference solution is a feasible solution to the primal
SDP. The goal now is to find a cost function C such that there is an optimal dual solution of sufficiently high
rank (here rank n− k + 1), so that the reference solution is the unique optimal solution to the primal SDP.
We show that it is always possible to find a cost function C such that the dual has sufficiently high rank.
Our construction of C depends on the coloring of the graph; however, we do show that such a C exists.

Furthermore, the construction of C suggests a heuristic for finding a coloring of the graph, and we show
that the heuristic works well. We enumerated all maximal planar graphs of up to 14 vertices containing a
K4. The heuristics successfully colored all graphs of up to 11 vertices, and at least 99.75% of all graphs on
12, 13, and 14 vertices. The heuristics involve repeatedly solving semidefinite programs, and thus are not
practical for large graphs (although they still run in polynomial time). However, we view them as a proof of
concept that it might be possible to use our framework to reliably 4-color planar graphs.

Our interest in this direction of research was prompted by the Colin de Verdière invariant [5] (see also
[17] for a useful survey of the invariant). A generalized Laplacian L = (ℓij) of graph G is a matrix such that
the entries ℓij < 0 when (i, j) ∈ E, and ℓij = 0 when (i, j) /∈ E. The Colin de Verdiére invariant, µ(G), is
defined as follows.

Definition 1.1. The Colin de Verdière invariant µ(G) is the largest corank of a generalized Laplacian L of
G such that:

1. L has exactly one negative eigenvalue of multiplicity one;

2. there is no nonzero matrix X = (xij) such that LX = 0 and such that xij = 0 whenever i = j or
ℓij 6= 0.

Colin de Verdiére shows that µ(G) ≤ 3 if and only if G is planar; in other words, any generalized Laplacian
of G with exactly one negative eigenvalue of multiplicity 1 will have rank at least n− 3 (modulo the second
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condition on the invariant, which we will ignore for the moment). Other results show that G is outerplanar if
and only if µ(G) ≤ 2, and G is a collection of paths if and only if µ(G) ≤ 1. Colin de Verdière [5] conjectures
that χ(G) ≤ µ(G) + 1; this result is known to hold for µ(G) ≤ 4. We note if G is planar that the part
of the dual matrix −

∑n
i=1 yiEii −

∑

e∈E zeEe is indeed a generalized Laplacian L of a planar graph when
the ze ≥ 0 for all e ∈ E, and that if G is connected, then the yi can be adjusted so that this matrix has
a single negative eigenvalue of multiplicity one. Thus this part of the matrix, under these conditions, must
have sufficiently high rank, as desired to verify that the optimal primal solution is the reference solution.
This would show that if the graph G has a clique on µ(G)+ 1 vertices, then indeed χ(G) = µ(G)+ 1. So, for
example, this would prove that any planar graph with a K4 can be four-colored, leading to a non-computer
assisted proof of the four-color theorem. However, we do not know how to find the corresponding cost matrix
C or show that the dual S we find is optimal. Still, we view our heuristics as a step towards finding a way
to construct the cost matrix C without knowledge of the coloring, and without reliance on the machinery of
the proofs of the four-color theorem that have been developed thus far.

The rest of this paper is structured as follows. In Section 2, we give some preliminary results on semidef-
inite programming. In Section 3, we show our results for the strict vector chromatic number SDP, and show
that (k− 1)-trees imply dual solutions of sufficiently high rank, while graphs that are not uniquely colorable
imply that such dual solutions cannot exist. In Section 4, we turn to the SDP with cost matrix C, and show
that for any k-colorable graph with a k-clique, a cost matrix C exists that gives rise to a dual of sufficiently
high rank. In Section 5, we give two heuristics for coloring planar graphs based on our construction of the
cost matrix C, and show a case where the heuristic fails to find a 4-coloring of a planar graph. Finally, we
turn to some further thoughts and remaining open questions in Section 6.

2 Preliminaries

In this section, we recall some basic facts about semidefinite matrices and semidefinite programs that we
will use in subsequent sections.

As noted in the introduction, the primal and dual semidefinite programs, which we will label by (P ) and
(D) respectively, are as follows:

minimize C •X maximize bT y
subject to Ai •X = bi, for i = 1, . . . ,m, subject to S = C −

∑m
i=1 yiAi,

(P ) X � 0, (D) S � 0,
X ∈ ℜℓ×ℓ, S ∈ ℜℓ×ℓ.

We use • to denote matrix outer products, so that C •X , for instance, denotes
∑ℓ

i=1

∑ℓ
j=1 cijxij .

We always have weak duality for semidefinite programs, so that the following holds.

Fact 2.1. Given any feasible X for (P ) and y for (D), C •X ≥ bT y.

Thus if we can produce a feasible X for (P ) and a feasible y for (D) such that C • X = bT y, then X
must be optimal for (P ) and y optimal for (D).

The following is also known, and is the semidefinite programming version of complementary slackness
conditions for linear programming.

Fact 2.2. [1, Theorem 2.10, Corollary 2.11] For optimal X for (P ) and y for (D), XS = 0 and rank(X)+
rank(S) ≤ ℓ.

Semidefinite programs and vector programs (such as the strict vector chromatic vector program) are
equivalent because a symmetric X ∈ ℜn×n is positive semidefinite if and only if X = QDQT for a real
matrix Q ∈ ℜn×n and diagonal matrix D in which the entries of D are the eigenvalues of X , and the
eigenvalues are all nonnegative. We can then consider D1/2, the diagonal matrix in which each diagonal
entry is the square root of the corresponding entry of D. Then X = (QD1/2)(QD1/2)T . If we let vi ∈ ℜn be
the ith row of QD1/2, then xij = vi · vj , and similarly, given the vectors vi, we can construct a semidefinite
matrix X with xij = vi · vj . We also make the following observation based on this decomposition.

Observation 2.3. Given a semidefinite matrix X = QDQT ∈ ℜn×n, rank(X) = d if and only if the vectors
vi ∈ ℜn with vi the ith row of QD1/2 are supported on just d coordinates.
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3 The Strict Vector Chromatic Number SDP

Recall the strict vector chromatic SDP given in the introduction, which we now label (SVCN):

minimize α
subject to vi · vj = α, ∀(i, j) ∈ E,
(SVCN) vi · vi = 1, ∀i ∈ V,

vi ∈ Rn, ∀i ∈ V.

In this section, we give a partial characterization of graphs for which the reference solution is an optimal
solution to (SVCN).

First, we observe that (SVCN) is equivalent to the following semidefinite program:

minimize −z00
subject to zij + z00 = 0, ∀(i, j) ∈ E
(SV CN -P ) zii = 1, ∀i ∈ V

zi0 = z0i = 0 ∀i ∈ V
Z = (zij) � 0,

Z symmetric, Z ∈ ℜ(n+1)×(n+1)

The dual of this SDP is

maximize −
∑

i∈V wii

subject to w00 = −1 +
∑

i6=j wij ,

(SV CN -D) wij = 0, ∀(i, j) /∈ E
W = (wij) � 0,

W symmetric, W ∈ ℜ(n+1)×(n+1)

In what follows, we will want to relate the rank of the primal submatrix X = (zij)i,j∈V to the rank of
the dual submatrix S = (wij)i,j∈V ; that is, we want to look at the submatrices that don’t contain the 0th
row and column of the primal solution (corresponding to the variable α in (SVCN)) and the corresponding
0th row and column of the dual solution. We will henceforward in this section call these submatrices X and
S.

Lemma 3.1. Given an optimal primal solution Z to (SVCN-P) and optimal dual solution W to (SVCN-D),
we have that rank(X) + rank(S) ≤ n.

Proof. If for optimal dual solution S, the submatrix S = (sij)i∈V has rank at least n − k, then S has rank
at least n − k. Then by Fact 2.2, any optimal primal solution W to (SVCN-P) must have rank at most
(n+ 1)− (n− k) = k + 1. By Observation 2.3, the dimension of the corresponding vectors v of the matrix
W must be at most k+ 1. But we note that by the condition that wi0 = vi · v0 = 0 for all i ∈ V , it must be
the case that all vectors vi for i ∈ V are orthogonal to v0, so that the vectors vi for i ∈ V lie in dimension
at most k. Then by Observation 2.3 the rank of X is at most k, giving the desired inequality.

Similarly, if the rank of X is at least k, then because w00 is positive, the rank of Z must be at least k+1.
Then by Fact 2.2, the rank of W must be at most (n+1)− (k+1) = n− k, so that the rank of S is at most
n− k.

Because the values of Z and W are determined by the submatrices X and S, we will for the rest of the
section refer to primal solutions X and dual solutions S.

Our main result for this section is about graphs that are k-trees.

Definition 3.2. A (k − 1)-tree with n vertices is an undirected graph constructed by beginning with the
complete graph on k vertices and repeatedly adding vertices in such a way that each new vertex, v, has k− 1
neighbors that, together with v, form a k-clique.

An easy inductive argument shows that these graphs are k-colorable. Also, (k− 1)-trees are known to be
uniquely k-colorable, where uniquely colorable means every coloring produces that same vertex partitioning.
Once k colors are assigned to the initial complete graph with k vertices, the color of each new vertex is
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uniquely determined by its k − 1 neighbors. This partitioning into color classes is unique up to permuting
the colors. Note that by construction, a (k − 1)-tree contains a Kk.

Recall that Karger, Motwani, and Sudan [11] show that the solution to (SVCN) is −1/(ϑ(Ḡ)− 1) where
ϑ(Ḡ) is the Lovász theta function. Lovász [13] proved that ω(G) ≤ ϑ(Ḡ) ≤ χ(G) where ω(G) and χ(G)
are the clique and chromatic numbers of G respectively. In particular, if a graph is c-colorable, the optimal
solution to this vector program is at most −1/(c−1). Note that as previously remarked, (k−1)-trees contain
Kk cliques and are k-colorable. As a result, the optimal value of (SVCN) for a (k − 1)-tree will be exactly
−1/(k − 1).

Our goal is to show there is a feasible solution to the dual of (SVCN) with high rank. In particular, given
a (k − 1)-tree with n vertices, we show the existence of a dual solution with rank at least n − k + 1. This
ensures that any primal solution has rank at most k − 1; we show that the reference solution is the unique
optimal primal solution. This is formalized in the following theorem.

Theorem 3.3. Given a (k − 1)-tree G with n vertices, there is an optimal dual solution S to (SVCN-D)
with rank at least n− k + 1, and thus any optimal primal solution X to (SVCN-P) has rank at most k − 1.

We subsequently prove that the reference solution is indeed the unique optimal solution in this case.

Theorem 3.4. The reference solution is the unique optimal primal solution (up to rotation) for a (k−1)-tree
G = (V,E).

To prove Theorem 3.3, we need a number of supporting lemmas. We begin with the following.

Lemma 3.5. Let tri(G) denote the number of triangles in a (k− 1)-tree, G. Then, for a (k− 1)-tree G with
n vertices,

|E(G)| = (2n− k)
k − 1

2
(1)

tri(G) =
(3n− 2k)(k − 1)(k − 2)

6
. (2)

Proof. We first prove (1) by induction. The smallest (k− 1)-tree is the complete graph with n = k vertices.

This graph has
(

k
2

)

= k(k−1)
2 edges. We also have (2n− k)k−1

2 = (2k− k)k−1
2 = (k−1)k

2 . Assume the claim is
true for all (k − 1)-trees with at most n vertices. If we add an n+ 1st vertex, we are also adding k − 1 new

edges. Our new graph will have (2n−k)(k−1)
2 +(k−1) = (2n−k)(k−1)+2(k−1)

2 = (2(n+1)−k)(k−1)
2 edges, as desired.

To count triangles, we begin with the complete graph on k vertices again. This graph has
(

k
3

)

=
k(k−1)(k−2)

6 triangles. We also have (3n−2k)(k−1)(k−2)
6 = (3k−2k)(k−1)(k−2)

6 = k(k−1)(k−2)
6 . Assume the claim

is true for all (k − 1)-trees with at most n vertices. If we add an n + 1st vertex, we are also adding
(

k−1
2

)

new triangles. Then this new graph has (3n−2k)(k−1)(k−2)
6 + (k−1)(k−2)

2 = (3n−2k)(k−1)(k−2)+3(k−1)(k−2)
6 =

(3(n+1)−2k)(k−1)(k−2)
6 triangles, as desired.

Consider a (k − 1)-tree G with n vertices. For v ∈ V we denote the neighborhood of v by N(v) = {u :
(u, v) ∈ E}. We define the following matrix S(G) which may be referred to as S if G is clear from context.

S(G)ij =











































|N(i)| − (k − 2)

k(k − 1)(n− k + 1)
i = j

|N(i) ∩N(j)| − (k − 3)

k(k − 1)(n− k + 1)
(i, j) ∈ E

0 (i, j) /∈ E, i 6= j.

We will show that S(G) is an optimal dual solution with rank n−k+1. First, we show S(G) is a feasible
solution with help from the following lemma.

Lemma 3.6. For a (k − 1)-tree G with n vertices, S(G) is positive semidefinite.

6



Proof. Observe that it suffices to show S′(G) = k(k− 1)(n− k+1)S(G) is positive semidefinite (PSD) since
k(k − 1)(n − k + 1) > 0 for n ≥ k. We proceed by induction. First consider (k − 1)-trees with k vertices.
There is only one, G = Kk. Furthermore, S′(Kk) is equal to the all-ones matrix which has eigenvalues k
and 0 with multiplicity k − 1 and thus is PSD.

Now assume there is some integer n such that for every (k − 1)-tree, G, with at most n vertices, S′(G)
is PSD. Consider a (k − 1)-tree G with n+ 1 vertices. Since it is a (k − 1)-tree, it can be constructed from
some smaller (k− 1)-tree G′ with n vertices by adding a vertex v and (k− 1) edges that form a k clique with
the k − 1 neighbors. By assumption, S′(G′) is PSD. Let I be the set of indices of the k − 1 neighbors of v.
Then we observe that S′(G) = T + vn+1v

T
n+1 where

T =











0

S′(G′)
...
0

0 · · · 0 0











and

vn+1(i) =

{

1 i ∈ I ∪ {n+ 1}

0 otherwise
.

Then xTS′(G)x = xTTx + xT vn+1v
T
n+1x ≥ xT vn+1v

T
n+1x = (vTn+1x)

2 ≥ 0 where the first inequality is due
to T being PSD since S′(G′) is PSD.

Lemma 3.7. For a (k − 1)-tree G with n vertices, S(G) is a feasible dual slack matrix.

Proof. Lemma 3.6 shows that S(G) is PSD. To complete this claim, we must show that the dual constraints
are satisfied. That S(G)ij = 0 for (i, j) /∈ E is clear by construction. The other constraint requires
∑

i6=j sij ≥ 1. For S(G),

∑

i6=j

Sij = 2
∑

(i,j)∈E

|N(i) ∩N(j)| − (k − 3)

k(k − 1)(n− k + 1)

=
1

k(k − 1)(n− k + 1)



−2(k − 3)|E(G)| + 2
∑

(i,j)∈E

|N(i) ∩N(j)|





=
1

k(k − 1)(n− k + 1)

[

−2(k − 3)((2n− k)
k − 1

2
) + 2

∑

v∈V

(# of triangles in G containing v)

]

=
1

k(k − 1)(n− k + 1)

[

− (k − 3)(k − 1)(2n− k) + 6tri(G)
]

=
−(k − 3)(k − 1)(2n− k) + 6( (3n−2k)(k−1)(k−2)

6 )

k(k − 1)(n− k + 1)

=
(k − 1)((k − 2)(3n− 2k)− (k − 3)(2n− k))

k(k − 1)(n− k + 1)

=
(k − 1)(3nk − 2k2 − 6n+ 4k − 2nk + k2 + 6n− 3k)

k(k − 1)(n− k + 1)

=
k(k − 1)(n− k + 1)

k(k − 1)(n− k + 1)
= 1

where we use both (1) and (2) from Lemma 3.5.

We can now show that S(G) is an optimal dual solution.

Theorem 3.8. For a (k − 1)-tree G with n vertices, S(G) is an optimal dual solution.
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Proof. We remarked earlier that the optimal primal solution for a (k− 1)-tree is −1/(k− 1). Thus for S(G)
to be an optimal dual solution, it suffices to show that −

∑

i Sii = −1/(k− 1). Again using (1) from Lemma
3.5, we have

−

n
∑

i=1

Sii = −

n
∑

i=1

|N(i)| − (k − 2)

k(k − 1)(n− k + 1)

= −
1

k(k − 1)(n− k + 1)

[

−(k − 2)n+

n
∑

i=1

|N(i)|

]

= −
−(k − 2)n+ 2|E|

k(k − 1)(n− k + 1)

= −
−(k − 2)n+ ((2n− k)(k − 1))

k(k − 1)(n− k + 1)

= −
−nk + 2n+ 2nk − 2n− k2 + k

k(k − 1)(n− k + 1)
= −1/(k − 1).

Finally, we want to show that for a (k− 1)-tree G with n vertices, S(G) has rank at least n− k+1. This
guarantees that any primal solution has rank at most k − 1.

Theorem 3.9. For a (k − 1)-tree G with n vertices, S(G) has rank at least n− k + 1.

Proof. It again suffices to show the claim is true for S′(G) = k(k − 1)(n − k + 1)S(G). Proceeding by
induction, for n = k we have rank(S′(G)) = rank(S′(Kk)) = 1 = k − (k − 1) with S′(Kk) equal to the
all-ones matrix. Assuming the claim is true for all (k − 1)-trees with at most n vertices, we consider a
(k − 1)-tree G with n+ 1 vertices. We again use the decomposition S′(G) = T + vn+1v

T
n+1 where

T =











0

S′(G′)
...
0

0 · · · 0 0











, vn+1(i) =

{

1 i ∈ I ∪ {n+ 1}

0 otherwise
,

and G′ is a (k−1)-tree with n vertices acquired by removing vertex n+1 with exactly k−1 neighbors, i ∈ I,
from G. Note dim(ker(T )) = dim(ker(S′(G′)) + 1 ≤ k by assumption. Now assume x ∈ ker(S′(G)). Then

0 = xTS′(G)x = xTTx+ xT vn+1v
T
n+1x.

Since T and vn+1v
T
n+1 are both PSD, this implies xTTx = 0 and xT vn+1v

T
n+1x = 0. Therefore ker(S′(G)) =

ker(T ) ∩ ker(vn+1v
T
n+1). However, note that x = (0, · · · , 0, 1) ∈ ker(T ), but x /∈ ker(vn+1v

T
n+1). Then

ker(S′(G)) = ker(T ) ∩ ker(vn+1v
T
n+1) ( ker(T ).

This implies dim(ker(S′(G)) < dim(ker(T )) ≤ k, so rank(S′(G)) ≥ (n+ 1)− k + 1.

Theorem 3.3. Given a (k − 1)-tree G with n vertices, there is an optimal dual solution S to (SVCN-D)
with rank at least n− k + 1, and thus any optimal primal solution X to (SVCN-P) has rank at most k − 1.

Proof. Theorem 3.3 follows as an immediate consequence of Lemma 3.7, Theorem 3.8, and Theorem 3.9.

We now turn to showing that the reference solution is indeed the optimal solution in the case of (k− 1)-
trees.

Theorem 3.4. The reference solution is the unique optimal primal solution (up to rotation) for a (k−1)-tree
G = (V,E).
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Proof. We already know that the reference solution given by u1, u2, . . . , uk−1, uk = −
∑k−1

i=1 ui where {ui}
k
i=1

are linearly independent is an optimal rank k − 1 solution to the primal SDP. Furthermore, we know from
Theorem 3.3 that every primal solution has rank at most k − 1. To prove the claim, we must show the
reference solution is the only optimal solution (up to rotation). Consider the smallest (k − 1)-tree, the
complete graph on k vertices, Kk. Choose k − 1 of the vertices and label the corresponding vectors as
v1, . . . , vk−1. Then we show these k − 1 vectors are linearly independent. Assume they are not and let
j ≤ k − 1 be the smallest index such that vj =

∑j−1
r=1 αrvr for some α1, . . . , αj−1. By the constraints of the

vector program, we know vi · vj = −1/(k − 1) for i = 1, · · · , j − 1. Furthermore, for any such i,

−1/(k − 1) = vi · vj = vi ·

(

j−1
∑

i=r

αrvr

)

= αi −
1

k − 1





∑

r 6=i:r∈{1,...,j−1}

αr



 .

If we subtract two of these equations deriving from i = i1, i2, we see that

0 = (αi1 −
1

k − 1
αi2 )− (αi2 −

1

k − 1
αi1).

This implies αi1 = αi2 and thus the coefficient αi is the same for every i ∈ {1, . . . , j − 1}. Relabeling this

coefficient as α, we can write vj = α
∑j−1

r=1 vr. Considering −1/(k − 1) = vi · vj again, we see −1/(k − 1) =

α(1 − j−2
k−1 ), so α = − 1

k−j+1 . However, 1 = vj · vj tells us

1 = α2(

j−1
∑

r=1

vr) · (

j−1
∑

r=1

vr)

= α2

j−1
∑

r=1

(

vr · (

j−1
∑

p=1

vp)

)

= α2

j−1
∑

r=1

(1−
j − 2

k − 1
)

= α2((j − 1)(1−
j − 2

k − 1
))

=
1

(k − j + 1)2
(j − 1)(k − j + 1)

k − 1

=
j − 1

(k − 1)(k − j + 1)
.

This means j = k2

k = k.
Now we consider the vector vk assigned to the final vertex of the (k − 1)-tree. Again, we have vi · vk =

−1/(k− 1) for i = 1, . . . , k− 1. For a given i, the set of solutions to vi ·vk is represented by a hyperplane, Hi

in the (k− 1)-dimensional vector space spanned by {v1, . . . , vk−1}. Therefore, a satisfying vector vk must lie
in H1 ∩ · · · ∩Hk−1. Because v1, . . . , vk−1 are linearly independent, dim(H1 ∩ · · · ∩Hk−1) = 0. Thus there is

a unique vector that satisfies the given equations. Since v = −
∑k−1

i=1 vi satisfies all k − 1 equations, we find
that vk = v. Therefore, this solution is exactly the reference solution.

Now, assume the claim is true for all (k − 1)-trees on n vertices. Consider a (k − 1)-tree, G, with n+ 1
vertices and a rank k − 1 primal solution. G is constructed from a (k − 1)-tree, G′, with n vertices by
attaching an additional vertex v with edges to all vertices in a (k− 1)-clique, K, of G′. Therefore the primal
solution to G is also a rank k − 1 primal solution to G′. Then by induction, we know this must be the
reference solution v1, . . . , vk−1, vk = −

∑k−1
i=1 vi. By symmetry, we may assume that the vertices in K are

assigned to v1, . . . , vk−1. Finally, if vv is the vector assigned to v, then by the same hyperplane argument,
we find that vv = vk. Therefore the primal solution to G is again the reference solution.

Theorem 3.4 shows that we can partition the vertices of a (k−1)-tree into k sets with each set associated
to a different vector assigned in the low rank primal solution. Since vertices u, v are only in the same set in
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the partition if they were assigned the same vector in the primal solution, it is not possible for neighbors to
be in the same set. We can then produce a valid coloring of the vertices by associating one color to each set
in the partition.

We now turn to characterizing cases in which we cannot find dual solutions of sufficiently high rank
by looking at potential solutions of vector colorings for graphs without unique colorings. In particular,
we restrict our attention to graphs that have multiple distinct k-colorings and contain a k-clique. These
assumptions provide information about the optimal objective function values.

Theorem 3.10. Let G be a graph with n vertices, multiple distinct k-colorings, and a k-clique. There exists
a primal solution to the strict vector chromatic number program for G with rank greater than k− 1, and thus
by Fact 2.2 the rank of any optimal dual solution must be less than n− k + 1.

Proof. Let c1, c2 be two distinct k-colorings of G. Let K be a k-clique in G. Begin with a reference solution
of rank k − 1 and assign each color class a corresponding vector in such a way that c1(i) = c2(i) for i ∈ K.
This fixes the color labelling for the vertices in K. Then, we can represent these colorings by the PSD
matrices C1 and C2, respectively, where Cp(ij) = 1 if cp(i) = cp(j) and Cp(ij) = −1/(k− 1) if cp(i) 6= cp(j)
for p = 1, 2 and i, j ∈ [n]. Note then, for α ∈ (0, 1), X = αC1 +(1−α)C2 is also a valid solution to the SDP.
It suffices to prove that X has rank greater than k − 1 for some α ∈ (0, 1).

Because C1 and C2 are PSD, for any value of α ∈ (0, 1), ker(X) = ker(C1) ∩ ker(C2). We will show
there is a vector x ∈ ker(C1) such that x /∈ ker(C2) from which the result directly follows.

Let v be a vertex whose color changes, i.e. c1(v) 6= c2(v). Then v cannot be in K. Let s ∈ K be
such that c1(s) = c1(v) and thus c2(s) 6= c2(v). Let i1, i2, . . . , ik−2 ∈ K such that c2(ij) 6= c2(v) for
j = 1, . . . k − 2. Also note that c1(ij) 6= c1(v) since c1(s) = c1(v) and (ij , s) ∈ E for j = 1, . . . , k − 2.
Because dim(ker(C1)) = n− (k − 1) = n− k + 1, there exists x ∈ ker(C1) such that x 6= 0 but x(i) = 0 for
i 6= v, s, i1, . . . , ik−2. Assume x ∈ ker(C2); we show this leads to a contradiction. Then,

(C1x)(v) = C1(vv)x(v) + C1(vs)x(s) +

k−2
∑

j=1

C1(vij)x(ij) = x(v) + x(s)−
1

k − 1

k−2
∑

j=1

x(ij) = 0

and

(C2x)(v) = C2(vv)x(v) + C2(vs)x(s) +

k−2
∑

j=1

C2(vij)x(ij) = x(v)−
1

k − 1
x(s)−

1

k − 1

k−2
∑

j=1

x(ij) = 0

from which we can conclude that x(s) = 0. Similarly,

(C1x)(s) = C1(sv)x(v) +

k−2
∑

j=1

C1(sij)x(ij) = x(v) −
1

k − 1

k−2
∑

j=1

x(ij) = 0

and

(C2x)(s) = C2(sv)x(v) +
k−2
∑

j=1

C2(vij)x(ij) = −
1

k − 1
x(v)−

1

k − 1

k−2
∑

j=1

x(ij) = 0

imply that x(v) = 0. By considering row ij for j = 1, . . . , k − 2, we see that the x(ij) satisfy

A[x(i1), x(i2), . . . , x(ik−2)]
T = 0

where A is the (k−2)×(k−2) matrix with 1 along the diagonal and −1/(k−1) everywhere else. We can write
A as A = − 1

k−1J + k
k−1I where J is the all 1s matrix. Then A has eigenvalues 2/(k− 1) with multiplicity 1

and k/(k− 1) with multiplicity k− 3, and thus has trivial nullspace. Therefore [x(i1), x(i2), . . . , x(ik−2)] = 0
which contradicts that x 6= 0. Then x /∈ ker(C2), so rank(X) > k − 1.

While we have shown that (k−1)-trees have sufficiently high dual rank for the standard vector chromatic
number SDP, it would be nice if we could completely characterize which graphs have high dual rank. A
reasonable guess would be that a k-colorable graph G containing a k-clique has high dual rank if and only
if it is uniquely colorable. This assertion is true for the important special case of planar graphs.
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Corollary 3.11. A planar graph with n vertices has dual rank at least n − 3 if and only if it is uniquely
colorable.

Proof. Fowler [6] shows that uniquely-colorable planar graphs are exactly the set of planar 3-trees. By
Theorem 3.3 we know such graphs have dual rank at least n − 3. Furthermore, Theorem 3.10 shows that
graphs with multiple colorings have primal solutions with rank more than 3 and therefore do not have dual
solutions with rank n− 3.

Unfortunately, the following example shows unique colorability is not sufficient in general for a sufficiently
high dual rank. Hillar and Windfeldt [9, Figure 2] presented the uniquely 3-colorable graph in Figure 1
excluding vertex 25 which adds a triangle. Computing the primal and dual SDPs of this graph returns
solutions with objective value −0.5, primal rank of 24, and dual rank of 1. If the claim were true, we would
expect all dual solutions to have rank at least 23.

Thus it remains an interesting open question to characterize in general cases in which graphs have
sufficiently high dual rank and have the reference solution as the optimal primal solution.

1

2 3

4

5

6

7 8

9

10

1112

1314

15 16

1718

19

20

21 22

23

24

25

Figure 1: Uniquely 3-colorable graph with a K3 which does not have any dual optimal solution of sufficiently
high dual rank.

4 A Semidefinite Program with Costs

Unfortunately, Theorem 3.10 seems to indicate that this method of looking for graphs that have high dual
rank with the standard vector chromatic number SDP cannot be generalized to graphs with multiple color-
ings. To extend this method, we consider a modified SDP described next. The new program utilizes a new
objective function. Here, we introduce the notion of a cost matrix C(G). The goal is to identify a C(G) such
that minimizing C(G) •X forces X to have our desired rank. In particular, we consider the SDP given by

minimize C(G) •X
subject to Xij = −1/(k − 1), ∀(i, j) ∈ E,
(CP ) Xii = 1, ∀i ∈ V,

X � 0.

We observe that the solutions to (SVCN) with α = −1/(k − 1) are exactly the feasible solutions to (CP).
The corresponding dual SDP is
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maximize
∑n

i=1 yi −
2

k−1

∑

e∈E ze
subject to S = C −

∑n
i=1 yiEii −

∑

e∈E zeEe,
(CD) S � 0.

where Eii is the matrix with a 1 at position ii and 0 elsewhere and for e = (i, j), Ee is the matrix with 1 at
positions ij and ji and 0 elsewhere.

To demonstrate how this cost matrix influences the behavior of rank(X), assume that G = (V,E) is a
k-colorable graph containing a k-clique, but is not a (k − 1)-tree. We still know there is a solution to the
strict vector chromatic number program with α = −1/(k− 1), and thus it is possible to find an X satisfying
our modified vector program constraints. Now fix c : V → [k] to be a valid k-coloring of G. With this
coloring, we can define an associated matrix C(G) in the following way:

C(G)ij =































−1 i < j, c(i) = c(j), ∀ℓ such that i < ℓ < j, c(i) 6= c(ℓ)

−1 i > j, c(i) = c(j), ∀ℓ such that i > ℓ > j, c(i) 6= c(ℓ)

0 otherwise.

Intuitively, the reference solution corresponding to the coloring given by c is the solution that will minimize
total cost since we’ll look for a solution X with Xij = 1 exactly when C(G)ij = −1; for such entries, we’ll
have the same vectors corresponding to vertices i and j. But we can show additionally that there is a dual
optimal solution for cost function C(G) that has sufficiently high rank.

Theorem 4.1. For G and C(G) as described, there is an optimal dual solution with rank at least n− k+1,
so that any optimal primal solution has rank at most k − 1.

Let K be a k-clique in our k-colorable graph G. Let si denote the sum of entries in column i of C(G).
Consider the assignment of dual variables given by yi = si for i /∈ K, yi = si − 1 for i ∈ K, ze = −1 for
e = (i, j), i, j ∈ K, i 6= j, and ze = 0 otherwise. We denote this assignment by (y, z).

Lemma 4.2. The dual matrix S constructed with (y, z) is positive semidefinite.

Proof. Consider the complete graph on k vertices given by G = Kk (as this is the smallest possible k-colorable
graph containing a k-clique). Observe that C(Kk) is the matrix of all 0s as no two vertices can be colored
the same. Thus si = 0 for all i ∈ Kk. Furthermore, (y, z) assigns yi = −1 for all i ∈ Kk and ze = −1 for all
e ∈ Kk. Then S is the all-ones matrix with eigenvalues k and 0 with multiplicity k − 1, and thus is positive
semidefinite.

Now assume the claim is true for all k-colorable graphs containing a k-clique that have at most n
vertices. Let G = (V,E) such that |V | = n + 1, G is k-colorable, and G contains a k-clique, K. Then G
can be constructed by adding a vertex vn+1 and its adjacent edges to some graph G′ = (V ′, E′) such that
|V ′| = n, G′ is k-colorable, and G′ contains K. By assumption, the matrix S′ corresponding to G′, {y′i}

n
i=1,

and {z′e}e∈E′ is positive semidefinite.
Let vm be the largest-indexed vertex that is the same color as vn+1 after it is added to G. We consider

how the addition of vn+1 affects C(G′), {yi}
n+1
i=1 , and {ze}e∈E. For i, j 6= n+ 1, C(G)ij = C(G′)ij . We also

observe C(G)m(n+1) = C(G)(n+1)m = −1 and C(G)i(n+1) = C(G)(n+1)i = 0 for i 6= m. Furthermore, for
i 6= m,n+ 1, yi = y′i, while ym = y′m − 1 and yn+1 = −1. Finally, ze = −1 for e ∈ K and 0 otherwise.

With this update, we see that

S(G) =











0

S′(G′)
...
0

0 · · · 0 0











+ vvT

where vT = [0, . . . , 0,−1, 0, . . . , 0, 1]. It follows that S(G) is positive semidefinite since S′(G′) is PSD by
assumption and for all x ∈ Rn+1, xT vvTx = (vTx)2 ≥ 0.
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Theorem 4.3. The assignment (y, z) is an optimal dual solution, and the reference solution is an optimal
primal solution.

Proof. The previous lemma shows (y, z) satisfies the constraints. Thus to prove this claim, it suffices to show
(y, z) maximizes the objective function. We demonstrate this by showing that the reference solution has the
same objective function value.

First, we consider the dual objective function value for (y, z). We have

n
∑

i=1

yi −
2

k − 1

∑

e∈E

ze

= (

n
∑

i=1

si)− k +
2

k − 1

(

k

2

)

= (
∑

1≤i,j≤n

C(G)ij)− k + k =
∑

1≤i,j≤n

C(G)ij .

Now, let X be the matrix given by the reference solution:

Xij =































1 i = j

1 c(i) = c(j)

− 1
k−1 c(i) 6= c(j)

where c : V → [k] is the fixed coloring used to generate C(G). Note that X satisfies the constraints of the
primal SDP (CP). The objective function value is given by

C(G) •X =
∑

i,j:c(i)=c(j)

C(G)ij −
1

k − 1

∑

i,j:c(i) 6=c(j)

C(G)ij

=
∑

i,j:c(i)=c(j)

C(G)ij =
∑

1≤i,j,≤n

C(G)ij .

Since the primal and dual objective function values are equal, the corresponding solutions must be optimal.

Finally, we restate and prove Theorem 4.1.

Theorem 4.1. For G and C(G) as described, there is an optimal dual solution with rank at least n− k+1,
so that any optimal primal solution has rank at most k − 1.

Proof. Again begin by considering the complete graph on k vertices given by Kk. As previously discussed,
the matrix S determined by (y, z) is simply the all-ones matrix. It is straightforward to see this has rank 1
= k − k + 1.

Assume the claim holds for all k-colorable graphs containing a k-clique with at most n vertices. Let G
be a k-colorable graph containing a k-clique with n + 1 vertices. Following the same decomposition used
previously, we can write

S(G) = T + vvT

where

v(i) =











−1 i = m

1 i = n+ 1

0 otherwise
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for vm the largest-valued vertex colored the same as vn+1 and

T =











0

S′(G′)
...
0

0 · · · 0 0











.

Since S(G) is a sum of positive semidefinite matrices, ker(S(G)) = ker(T ) ∩ ker(vvT ). Observe that
x = (0, . . . , 0, 1) ∈ ker(T ). However, x /∈ ker(vvT ). Thus dim(ker(S(G))) = dim(ker(T ) ∩ ker(vvT )) <
dim(ker(T )) ≤ k as desired.

Theorem 4.4. For G and C(G) as described, the reference solution is the unique optimal primal solution.

Proof. Theorem 4.3 tells us that the reference solution is an optimal primal solution, while Theorem 4.1 tells
us that any optimal primal solution has rank at most k− 1. Therefore it suffices to show that any rank k− 1
optimal primal solution is in fact the reference solution.

From the proof of Theorem 4.3, we know that the optimal objective function value is
∑

1≤i,j≤n C(G)ij .
Furthermore, any primal feasible X satisfying C(G) •X =

∑

1≤i,j≤n C(G)ij must have Xij = 1 whenever
C(G)ij = −1 since Xij ≤ 1 for all 1 ≤ i, j ≤ n and each entry of C(G) is either 0 or -1. Let K be a Kk in
G, X be a rank k− 1 primal optimal solution and c be the k-coloring used to construct C(G). Define k sets
by Si = {v ∈ V : c(v) = i} for i = 1, . . . , k and let ni = |Si|.

We claim that X assigns each vertex a vector from the reference solution depending only on which Si

the vertex is a member of. For i = 1, . . . , k, sort the vertices in Si from smallest label to largest so that
Si = {vi1 , vi2 , . . . , vini

} where i1 < i2 < · · · < ini
. By construction of C, we have that Ci1i2 = Ci2i3 = · · · =

Cini−1ini
= −1 implying Xi1i2 = Xi2i3 = · · · = Xini−1ini

= 1. In particular, vi1 , vi2 , . . . , vini
are assigned the

same unit vector by X .
Let ui be the vector corresponding to Si for i = 1, . . . , k. We know that exactly one member of K must be

in each Si for i = 1, . . . , k, so ui · uj = −1/(k− 1) for 1 ≤ i, j ≤ k. Then following the proof of Theorem 3.4,
we see that these vectors are exactly the reference solution.

5 Experimental Results

Two heuristics have been implemented and experimentally demonstrated success returning low-rank primal
solutions for planar graphs. Neither algorithm assumes knowledge of a graph coloring. We tested these
heuristics on all maximal planar graphs of up to 14 vertices that contain a K4. These graphs were generated
via the planar graph generator plantri due to Brinkmann and McKay [4] found at https://users.cecs.
anu.edu.au/~bdm/plantri/. The ‘-a’ switch was used to produce graphs written in ascii format. The code
was implemented in Python using the MOSEK Optimizer as the SDP solver. Both the graph data files and
algorithm implementation can be found at https://github.com/rmirka/four-coloring.git. Our results
are shown in Table 1. The heuristics successfully colored all graphs with up to 11 vertices, and successfully
colored 99.75% of the graphs of 12-14 vertices. We do not record the running time of the heuristics; because
the heuristics involve repeatedly solving semidefinite programs, they are not competitive with other greedy
or local search style heuristics. Our primary reason for studying these heuristics was to find whether we
could reliably find a cost matrix C giving rise to a four-coloring for planar graphs.

At a high-level, both heuristics follow the same procedure. At each step, they solve the vector program
(CP) given in Section 4. If the returned solution does not have the desired rank, the cost matrix C is updated
and the process is repeated. The heuristics differ in how the cost matrix is updated.

The first heuristic (Algorithm 1) is based on the coloring-dependent cost matrix discussed in Section 4.
The algorithm first identifies a K4 = {k1, k2, k3, k4} and finds an initial solution with C = 0. If the primal
solution does not have low enough rank, the returned solution is used to update the cost matrix. Let
Si = {v ∈ V : Xvki

= 1} for i = 1, 2, 3, 4. Let v be a vertex in V \ (∪4
i=1Si). Then there must exist

i∗ ∈ {1, 2, 3, 4} such that Xvki∗
6= 1 and Xvki∗

6= −1/3; we update this Si∗ by adding v to it. Now, C is
constructed based on the Sj, j = 1, 2, 3, 4. In particular, for i = 1, 2, 3, 4, if ni denotes the number of vertices
in Si, then for j = 1, . . . , ni − 1, we set Crs = Csr = −1 where r and s are the jth and j +1st vertices in Si.
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Algorithm 1: (G = (V,E))

Find a clique K = {k1, k2, k3, k4} ;
C = 0;
i, j = 0;
badcolors = [];
good = True;
X,S, r, p = solveModified(G,C); /* call the Mosek optimizer to solve the SDP on graph G

with cost matrix C and return the primal and dual matrices (X,S, respectively) and

ranks(r, p, respectively) */

while r > 3 do

if Xikj
6= 1 and good then

badcolors = badcolors ∪ {kj};
CiSj [length(Sj)−2] = CSj [length(Sj)−2]i = 0;

X,S, r, p = solveModified(G,C);
good = False

end

else

good = True;
Ss = {v ∈ V : Xvks

= 1}, s = 1, 2, 3, 4;
colored = ∪4

s=1Ss;
stillLooking = True;
while stillLooking do

for q = 1, . . . , 4 do

if stillLooking and i /∈ colored and kq /∈ badcolors and Xikq
6= 1,−1/3 then

Sq = Sq ∪ {i};
stillLooking = False;
j = q;

end

end

if stillLooking then

i = i+ 1 mod n;
badcolors = []

end

end

C = 0;
for q = 1, . . . , 4 do

for s = 1, . . . , length(Sq)− 1 do

Cs,s+1 = Cs+1,s = −1;
end

end

X,S, r, p = solveModified(G,C)
end

end
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# nodes # maximally planar graphs with K4 # heuristic 1 failures # heuristic 2 failures
5 1 0 0
6 1 0 0
7 4 0 0
8 12 0 0
9 45 0 0
10 222 0 0
11 1219 0 0
12 7485 18 (∼ .24%) 18 (∼ .24%)
13 49149 108 (∼ .22%) 116 (∼ .24%)
14 337849 619 (∼ .18%) 811 (∼ .24%)

Table 1: This table depicts the number of times the heuristic algorithms failed on maximally planar graphs
with between 5 and 14 vertices.

This new cost matrix C is used to compute an updated solution X̂. If X̂ is of the desired rank, the algorithm
terminates. If not, we first check to see if X̂vki∗

= 1, i.e. if our selected vertex from the previous iteration was

successfully colored. If yes, we repeat the process beginning with our solution X̂ and selecting a currently
uncolored vertex. If v was not successfully colored, we remove the entry in the cost matrix corresponding
to this assignment from the previous iteration and resolve the SDP while adding ki∗ to a list of ‘bad’ colors
for v. We now repeat the process by selecting a new feasible color class for v (following the same rules as
previously in addition to requiring it not be in the list of ‘bad’ colors for v) and constructing Si, i = 1, 2, 3, 4
and C accordingly.

The second heuristic (Algorithm 2) is motivated by similar ideas but distinct cost-matrix updates. Again,
the algorithm first identifies a K4 = {k1, k2, k3, k4} and finds an initial solution with C = 0. Now, if X is a
primal solution with greater rank than desired, let S = {v ∈ V : ∃k ∈ K4 such that Xvk = 1}. Intuitively, S
is the set of vertices that are aligned with the four vectors corresponding to the K4 and thus have rank 3.
Now, choose a single vertex v ∈ V \ S. Again, there must exist k ∈ K4 such that Xvk 6= 1 or −1/3, so C is
updated such that Cvk = Ckv = −1. Now the vector program is run again, and the value of Xvk in the new
solution is immediately checked. If Xvk = 1 now, the algorithm proceeds as usual. However if Xvk 6= 1, the
cost matrix is updated so that Cvk = 0 again and a different entry is chosen to update. Again, this process
is repeated until the desired primal rank is achieved.

In both heuristics, the termination condition is that the primal rank is equal to 3, but this doesn’t
necessarily guarantee that the dual rank is n − 3. If instead one wanted to guarantee high dual rank, one
could run the algorithm one more time, i.e. once the low-rank primal solution is achieved, extract the coloring
and construct the corresponding C matrix as previously described in Theorem 4.1.

The example in Figure 2 causes both heuristics to fail without coloring the graph. First we note the
K4 = {2, 5, 6, 7}. In the first iteration of the heuristic, these are the only four vertices that are assigned
colors. In the second iteration, both heuristics successfully color vertex 1 to match vertex 6. However,
afterwards each heuristic is unable to color any more vertices (it tries and fails on all other possible colors
for the remaining vertices).

We considered whether our heuristics get stuck on graphs that also contained vertices resulting in irre-
vocable Kempe chain tangles. Irrevocable Kempe chain tangles occur when Kempe’s local-search method of
recoloring Kempe chains fails to make a color available for the vertex of interest; see Gethner et al. [8] for
a computational and empirical analysis of Kempe’s method and irrevocable Kempe chain tangles. As such,
finding an irrevocable Kempe chain tangle in a graph indicates that Kempe’s method will fail to color the
graph. We tested two graphs known to contain vertices that often result in irrevocable Kempe chain tangles
and slightly modified them to ensure they contained a K4. The graphs are given in Figure 3 and Figure 4.
Our heuristics did successfully color these graphs, indicating that the class of graphs for which our algorithm
does not terminate is different than the ones for which coloring with Kempe chains does not work.
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Algorithm 2: (G = (V,E))

Find a clique K = {k1, k2, k3, k4} ;
C = 0;
X,S, r, p = solveModified(G,C); /* call the Mosek optimizer to solve the SDP on graph G

with cost matrix C and return the primal and dual matrices (X,S, respectively) and

ranks(r, p, respectively) */

v∗ = k∗ = k1;
badcolors = [];
good = True;
while r > 3 do

if Xv∗,k∗ 6= 1 && good then

Cv∗,k∗ = Ck∗,v∗ = 0;
X,S, r, p = solveModified(G,C);
badcolors = badcolors ∪ {k∗};
good = False;

else

good = True;
Ss = {v ∈ V : Xvks

= 1}, s = 1, 2, 3, 4;
colored = ∪4

s=1Ss;
stillLooking = True;
while stillLooking do

for q = 1, . . . , 4 do

if stillLooking and v∗ /∈ colored and kq /∈ badcolors and Xv∗kq
6= 1,−1/3 then

Cv∗kq
= Ckqv∗ = −1;

stillLooking = False;
k∗ = kq;

end

end

if stillLooking then

v∗ = v∗ + 1 mod n;
badcolors = []

end

end

X,S, r, p = solveModified(G,C)
end

end
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Figure 2: Algorithm Obstacle: K4 = {2, 5, 6, 7}
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Figure 3: A graph for which at least one vertex results in an irrevocable Kempe chain tangle for at least one
labeling.

6 Further Thoughts, Open Questions, and Conclusions

In this section, we offer further thoughts about the connection of our work with the Colin de Verdière graph
parameter, give possible strengthening of our results, and conclude by posing some open questions.

6.1 Connections with the Colin de Verdiére Graph Parameter

As mentioned in the introduction, the research in this paper was prompted by the Colin de Verdière graph
parameter [5]. Recall that a generalized Laplacian L = (ℓij) of graph G is a matrix such that the entries
ℓij < 0 when (i, j) ∈ E, and ℓij = 0 when (i, j) /∈ E. We repeat the definition of the Colin de Verdiére
invariant, µ(G), here.
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Figure 4: A second graph for which at least one vertex results in an irrevocable Kempe chain tangle for at
least one labeling.

Definition 6.1. The Colin de Verdière invariant µ(G) is the largest corank of a generalized Laplacian L of
G such that:

1. L has exactly one negative eigenvalue of multiplicity one;

2. there is no nonzero matrix X = (xij) such that LX = 0 and such that xij = 0 whenever i = j or
ℓij 6= 0.

Recall that Colin de Verdiére shows that µ(G) ≤ 3 if and only if G is planar; in other words, any generalized
Laplacian of a planar graph G with exactly one negative eigenvalue of multiplicity 1 will have rank at least
n− 3 (modulo the second condition on the invariant). Recall further that Colin de Verdière [5] conjectures
that χ(G) ≤ µ(G) + 1; this result is known to hold for µ(G) ≤ 4.

As discussed in the introduction, there is an intriguing connection between the Colin de Verdière param-
eter and the dual slack matrix (CD), in that S −C is a generalized Laplacian as long as all ze > 0. We had
hoped to make use of this fact to be able to construct duals of sufficiently high rank in the case of planar
graphs; however, we have been unable to see how to do so. Recall that an optimal dual solution of corank 3
implies a primal solution with vectors in 3 dimensions for (CP), potentially implying the reference solution
for a 4-coloring.

6.2 Coloring-Independent Cost Matrix

The method given in Section 4 has a significant impediment. The C matrix defined previously assumes
knowledge of a coloring for a graph. Ideally, for this method to have greater impact, we would like to find
a definition of C(G) and a corresponding dual assignment (y, z) based solely on the structure of an input
graph and independent of a specific coloring, but still requiring the primal solution to be our desired low-rank
solution.

Fortunately, there is a formal way of thinking about what any possible C(G) must look like. Let us
again assume for a moment that G is a k-colorable graph containing a k-clique and define X based on a
specific coloring, c, of G as described above. Then if S is an optimal dual slack matrix and X is an optimal
primal matrix, XS = 0. Then for any i, j ∈ [n],

∑n
p=1 XipSpj = 0. If X is the reference solution for the

coloring c, this implies
∑n

p=1 XipSpj =
∑

p:c(p)=c(i) Spj −
1

k−1

∑

p:c(p) 6=c(i) Spj = 0. In particular, let r1, . . . rk
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be representatives of the k color classes. Since the above is true for any i, j, fixing j and iterating through
i = r1, r2, . . . rk shows

∑

p:c(p)=c(r1)
Spj = · · · =

∑

p:c(p)=c(rk)
Spj .

This is slightly problematic as it seems to indicate either C(G) or (y, z) will require knowledge of a specific
coloring to guarantee this relationship. However, we can at least say something using the fact that a graph
containing a k-clique must use k different colors for these vertices alone. We show below a cost matrix C and
an optimal dual solution for which any feasible primal solution (including the reference solution) is optimal.

For a graph G containing a k-clique, consider C(G) given by C(G)ij = 1 if i = j or (i, j) ∈ E and
0 otherwise. Denote the number of Kks in G by K, the number of Kks containing i ∈ V by ki, and the
number of Kks containing (i, j) ∈ E by kij . Finally, for the assignment (y, z), set yi = C(G)ii − ki and
zij = C(G)ij − kij .

Recall that the dual matrix S is given by S = C(G)−
∑

i∈V yiEii −
∑

e=(i,j)∈E zijEe. Thus using (y, z),
Sij = kij for i 6= j while Sii = ki.

Lemma 6.2. The matrix S obtained using the assignment (y, z) is positive semidefinite.

Proof. Assume G has only one Kk composed from the vertices v1, . . . , vk. Then S has one eigenvalue of k
with corresponding eigenvector xk(i) = 1 if i ∈ {v1, . . . , vk} and 0 otherwise. S also has 0 as an eigenvalue
with multiplicity n− 1 corresponding to n− k elementary unit vectors {ei : i /∈ Kk} and k − 1 basis vectors
for the set {x : xv1 + · · ·+ xvk = 0}. Therefore S is PSD. Now if G contains p Kks, we can write S as a sum
of p PSD matrices where each corresponds to one of G’s Kks. Thus S is PSD.

Lemma 6.3. The matrix S obtained using the assignment (y, z) is optimal.

Proof. Consider the dual objective function. We have

∑

i∈V

yi −
2

k − 1

∑

(i,j)∈E

zij =
∑

i∈V

(C(G)ii − ki)−
2

k − 1

∑

(i,j)∈E

(C(G)ij − kij)

= (
∑

i∈V

C(G)ii)− kK −





2

k − 1

∑

(i,j)∈E

C(G)ij



+
2

k − 1

(

k

2

)

K

=
∑

i∈V

C(G)ii −
2

k − 1

∑

(i,j)∈E

C(G)ij

= C(G) •X

for any primal feasible X .

6.3 Open Questions

We close with several open questions. We were unable to give a complete characterization of the k-colorable
graphs with a Kk for which the strict vector chromatic number (SVCN) has a unique primal solution of the
reference solution. Such graphs must be uniquely colorable, but clearly some further restriction is needed.

When we know the coloring, we can produce a cost matrix C for the semidefinite program (CP) such that
the reference solution is the unique optimal solution and it must have rank k− 1. We wondered whether one
could use (CP) in a greedy coloring scheme, by incrementally constructing the matrix C; the graph in Figure
1 shows that our desired scheme does not work in a straightforward manner. Possibly one could consider an
algorithm with a limited amount of backtracking, as long as one could show that the algorithm continued to
make progress against some metric.

Another open question is whether one can somehow directly produce a cost matrix C leading to a dual
solution of sufficiently high rank that does not need knowledge of the coloring. And we conclude with the
open question that first motivated this work: is it possible to use the Colin de Verdière parameter to produce
this matrix C?
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