Abstract
Consider a linear program of the form \(\max \{\boldsymbol{c}^{\top }\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}\le \boldsymbol{b}\}\), where \(\boldsymbol{A}\) is an \(m\times n\) integral matrix. In 1986 Cook, Gerards, Schrijver, and Tardos proved that, given an optimal solution \(\boldsymbol{x}^{*}\), if an optimal integral solution \(\boldsymbol{z}^{*}\) exists, then it may be chosen such that \(\left\| \boldsymbol{x}^{*}-\boldsymbol{z}^{*}\right\| _{\infty }<n\varDelta \), where \(\varDelta \) is the largest magnitude of any subdeterminant of \(\boldsymbol{A}\). Since then an open question has been to improve this bound, assuming that \(\boldsymbol{b}\) is integral valued too. In this manuscript we show that \(n\varDelta \) can be replaced with whenever \(n\ge 2\) and \(\boldsymbol{x}^{*}\) is a vertex. We also show that, in certain circumstances, the factor n can be removed entirely.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Their upper bound is stated as \(n\cdot \max \big \{\varDelta _{k}(\boldsymbol{A}):\ k=1,\ldots ,n\big \}\), but their argument actually yields an upper bound of \(n\cdot \varDelta _{n-1}\left( \boldsymbol{A}\right) \). Furthermore, their result holds for any (not necessarily vertex) optimal LP solution \(\boldsymbol{x}^*\).
References
Aliev, I., Celaya, M., Henk, M., Williams, A.: Distance-sparsity transference for vertices of corner polyhedra. SIAM J. Optim. 31, 200–126 (2021). https://doi.org/10.1137/20M1353228
Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra. Math. Program. 175–198 (2019). https://doi.org/10.1007/s10107-019-01392-1
Cook, W., Gerards, A., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34, 251–264 (1986). https://doi.org/10.1007/BF01582230
Del Pia, A., Ma, M.: Proximity in concave integer quadratic programming. arXiv:2006.01718 (2021)
Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms 16, 1–14 (2020). https://doi.org/10.1145/3340322
Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104, 91–104 (2005). https://doi.org/10.1007/s10107-004-0570-3
Granot, F., Skorin-Kapov, J.: Some proximity and sensitivity results in quadratic integer programming. Math. Program. 47, 259–268 (1990). https://doi.org/10.1007/BF01580862
Gruber, P.: Convex and Discrete Geometry. Springer, Heidelberg (2007)
Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. ACM 37, 843–862 (1990). https://doi.org/10.1145/96559.96597
Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations in Theoretical Computer Science, vol. 43, pp. 43:1–43:17 (2019). https://doi.org/10.4230/LIPIcs.ITCS.2019.43
Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) ISCO 2020. LNCS, vol. 12176, pp. 115–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53262-8_10
Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number of differing columns of \(\Delta \)-modular integer programs. arXiv:2105.08160 (2021)
Mahler, K.: Ein übertragungsprinzip für konvexe Körper. Časopis Pešt. Mat. Fyz. 68, 93–102 (1939). (in German)
Nägele, M., Santiago, R., Zenklusen, R.: Congruency-constrained TU problems beyond the bimodular case. In: Proceedings of SODA 2022. arXiv:2109.03148 (2022)
Oertel, T., Paat, J., Weismantel, R.: The distributions of functions related to parametric integer optimization. SIAM J. Appl. Algebra Geom. 422–440 (2020). https://doi.org/10.1137/19M1275954
Paat, J., Weismantel, R., Weltge, S.: Distances between optimal solutions of mixed-integer programs. Math. Program. 455–468 (2018). https://doi.org/10.1007/s10107-018-1323-z
Santos, F.: A counterexample to the Hirsch Conjecture. Ann. Math. 176, 383–412 (2012). https://doi.org/10.4007/annals.2012.176.1.7
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
Veselov, S., Chirkov, A.: Integer programming with bimodular matrix. Discret. Optim. 6, 220–222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002
Werman, M., Magagnosc, D.: The relationship between integer and real solutions of constrained convex programming. Math. Program. 51, 133–135 (1991). https://doi.org/10.1007/BF01586929
Xu, L., Lee, J.: On proximity for k-regular mixed-integer linear optimization. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019. AISC, vol. 991, pp. 438–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_44
Acknowledgements
The third author was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant [RGPIN-2021-02475]. The fourth author was supported by the Einstein Foundation Berlin. The authors are grateful to the referees for their valuable suggestions and comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Celaya, M., Kuhlmann, S., Paat, J., Weismantel, R. (2022). Improving the Cook et al. Proximity Bound Given Integral Valued Constraints. In: Aardal, K., Sanità, L. (eds) Integer Programming and Combinatorial Optimization. IPCO 2022. Lecture Notes in Computer Science, vol 13265. Springer, Cham. https://doi.org/10.1007/978-3-031-06901-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-06901-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06900-0
Online ISBN: 978-3-031-06901-7
eBook Packages: Computer ScienceComputer Science (R0)