Skip to main content

\(\mathsf {Rubato}\): Noisy Ciphers for Approximate Homomorphic Encryption

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13275))

Abstract

A transciphering framework converts a symmetric ciphertext into a homomorphic ciphertext on the server-side, reducing computational and communication overload on the client-side. In Asiacrypt 2021, Cho et al. proposed the \(\mathsf {RtF}\) framework that supports approximate computation.

In this paper, we propose a family of noisy ciphers, dubbed \(\mathsf {Rubato}\), with a novel design strategy of introducing noise to a symmetric cipher of a low algebraic degree. With this strategy, the multiplicative complexity of the cipher is significantly reduced, compared to existing HE-friendly ciphers, without degrading the overall security. More precisely, given a moderate block size (16 to 64), \(\mathsf {Rubato}\) enjoys a low multiplicative depth (2 to 5) and a small number of multiplications per encrypted word (2.1 to 6.25) at the cost of slightly larger ciphertext expansion (1.26 to 1.31). The security of \(\mathsf {Rubato}\) is supported by comprehensive analysis including symmetric and LWE cryptanalysis. Compared to \(\mathsf {HERA}\) within the \(\mathsf {RtF}\) framework, client-side and server-side throughput is improved by 22.9% and 32.2%, respectively, at the cost of only 1.6% larger ciphertext expansion.

S. Kim—This work was done while S. Kim was a PhD student at KAIST.

J. Lee—This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1047146).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/KAIST-CryptLab/Rubato.

  2. 2.

    https://github.com/KAIST-CryptLab/RtF-Transciphering.

  3. 3.

    https://github.com/KAIST-CryptLab/Rubato.

  4. 4.

    https://github.com/ldsec/lattigo.

  5. 5.

    https://github.com/openssl/openssl.

  6. 6.

    https://github.com/XKCP/XKCP.

  7. 7.

    https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS.

References

  1. Albrecht, M., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the Arora-Ge algorithm against LWE. In: SCC 2012 - Third International Conference on Symbolic Computation and Cryptography, pp. 93–99, July 2012

    Google Scholar 

  2. Albrecht, M.R., Bai, S., Li, J., Rowell, J.: Lattice reduction with approximate enumeration oracles. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 732–759. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_25

    Chapter  Google Scholar 

  3. Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

    Article  MathSciNet  Google Scholar 

  4. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12160-4_18

    Chapter  Google Scholar 

  5. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_11

    Chapter  Google Scholar 

  6. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  7. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange: a new hope. In: SEC 2016, pp. 327–343. USENIX Association, USA (2016)

    Google Scholar 

  8. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symmetric Cryptol. 2020(3) (2020)

    Google Scholar 

  9. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34

    Chapter  Google Scholar 

  10. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_21

    Chapter  Google Scholar 

  11. Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–211. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77360-3_13

    Chapter  Google Scholar 

  12. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 10–24. SIAM (2016)

    Google Scholar 

  13. Bettale, L., Faugere, J.C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

    Article  MathSciNet  Google Scholar 

  14. Bettale, L., Faugère, J.C., Perret, L.: Solving polynomial systems over finite fields: improved analysis of the hybrid approach. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC 2012. Association for Computing Machinery (2012)

    Google Scholar 

  15. Beyne, T., et al.: Out of oddity – new cryptanalytic techniques against symmetric primitives optimized for integrity proof systems. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 299–328. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_11

    Chapter  Google Scholar 

  16. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

    Article  MathSciNet  Google Scholar 

  17. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating homomorphic evaluation of deep learning predictions. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds.) CSCML 2019. LNCS, vol. 11527, pp. 212–230. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20951-3_20

    Chapter  Google Scholar 

  18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)

    Google Scholar 

  19. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

    Article  MathSciNet  Google Scholar 

  20. Carlitz, L., Uchiyama, S.: Bounds for exponential sums. Duke Math. J. 24(1), 37–41 (1957)

    Article  MathSciNet  Google Scholar 

  21. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between (Ring) LWE ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp. 460–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3_18

    Chapter  Google Scholar 

  22. Chen, Y.: Réduction de Réseau et Sécurité Concrète du Chiffrement Complètement Homomorphe. Ph.D. thesis (2013). thèse de doctorat dirigée par Nguyen, Phong-Quang Informatique Paris 7 2013

    Google Scholar 

  23. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  24. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  25. Cho, J., et al.: Transciphering framework for approximate homomorphic encryption. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 640–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_22

    Chapter  Google Scholar 

  26. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_22

    Chapter  Google Scholar 

  27. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

    Chapter  Google Scholar 

  28. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 87–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_6

    Chapter  Google Scholar 

  29. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryption based on Toffoli-gates over large finite fields. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 3–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_1

    Chapter  Google Scholar 

  30. Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch, R.: Pasta: a case for hybrid homomorphic encryption. Cryptology ePrint Archive, Report 2021/731 (2021). https://ia.cr/2021/731

  31. Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomorphic evaluation of block ciphers using prince. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 208–220. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_17

    Chapter  Google Scholar 

  32. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  33. Dworkin, M.J.: SHA-3 standard: permutation-based hash and extendable-output functions. Technical report. National Institute of Standards and Technology (2015)

    Google Scholar 

  34. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

  35. Fröberg, R.: An inequality for Hilbert series of graded algebras. Mathematica Scandinavica 56, 117–144 (1985)

    Article  MathSciNet  Google Scholar 

  36. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3

    Chapter  Google Scholar 

  37. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13

    Chapter  Google Scholar 

  38. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  39. Göpfert, F.: Securely instantiating cryptographic schemes based on the learning with errors assumption. Ph.D. thesis, Technische Universität, Darmstadt (2016)

    Google Scholar 

  40. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: POSEIDON: a new hash function for zero-knowledge proof systems. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 519–535. USENIX Association, August 2021

    Google Scholar 

  41. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

    Chapter  Google Scholar 

  42. Ha, J., et al.: Masta: an HE-friendly cipher using modular arithmetic. IEEE Access 8, 194741–194751 (2020)

    Article  Google Scholar 

  43. Ha, J., Kim, S., Lee, B., Lee, J., Son, M.: Rubato: noisy ciphers for approximate homomorphic encryption (Full Version). To appear in the IACR Cryptology ePrint Archive (2022)

    Google Scholar 

  44. Hebborn, P., Leander, G.: Dasta - alternative linear layer for Rasta. IACR Trans. Symmetric Cryptol. 2020(3), 46–86 (2020)

    Article  Google Scholar 

  45. Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, using FiLIP and TFHE for an efficient delegation of computation. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 39–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_3

    Chapter  Google Scholar 

  46. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052332

    Chapter  Google Scholar 

  47. Laarhoven, T.: Search problems in cryptography: from fingerprinting to lattice sieving. Ph.D. thesis, Mathematics and Computer Science, February 2016, proefschrift

    Google Scholar 

  48. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20

    Chapter  Google Scholar 

  49. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  50. Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: bridging polynomial and non-polynomial evaluations in homomorphic encryption. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1057–1073. IEEE Computer Society, May 2021

    Google Scholar 

  51. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  52. Méaux, P., Carlet, C., Journault, A., Standaert, F.-X.: Improved filter permutators for efficient FHE: better instances and implementations. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 68–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_4

    Chapter  Google Scholar 

  53. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_13

    Chapter  Google Scholar 

  54. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 113–124. ACM (2011)

    Google Scholar 

  55. Park, S., Byun, J., Lee, J., Cheon, J.H., Lee, J.: HE-friendly algorithm for privacy-preserving SVM training. IEEE Access 8, 57414–57425 (2020)

    Article  Google Scholar 

  56. Player, R.: Parameter selection in lattice-based cryptography. Ph.D. thesis, Royal Holloway, University of London (2018)

    Google Scholar 

  57. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of low-data instances of full LowMCv2. IACR Trans. Symmetric Cryptol. 2018(3), 163–181 (2018)

    Article  Google Scholar 

  58. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009)

    Article  MathSciNet  Google Scholar 

  59. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(1), 181–199 (1994)

    Article  MathSciNet  Google Scholar 

  60. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seongkwang Kim or Jooyoung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ha, J., Kim, S., Lee, B., Lee, J., Son, M. (2022). \(\mathsf {Rubato}\): Noisy Ciphers for Approximate Homomorphic Encryption. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06944-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06943-7

  • Online ISBN: 978-3-031-06944-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics