Skip to main content

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13275))

Abstract

At ITCS 2020, Bartusek et al. proposed a candidate indistinguishability obfuscator (\(i\mathcal {O}\)) for affine determinant programs (ADPs). The candidate is special since it directly applies specific randomization techniques to the underlying ADP, without relying on the hardness of traditional cryptographic assumptions like discrete-log or learning with errors. It is relatively efficient compared to the rest of the \(i\mathcal {O}\) candidates. However, the obfuscation scheme requires further cryptanalysis since it was not known to be based on any well-formed mathematical assumptions.

In this paper, we show cryptanalytic attacks on the \(i\mathcal {O}\) candidate provided by Bartusek et al. Our attack exploits the weakness of one of the randomization steps in the candidate. The attack applies to a fairly general class of programs. At the end of the paper we discuss plausible countermeasures to defend against our attacks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here, we actually define a new class of branching programs that can be seen as a generalization of the deterministic BPs whose out degree of every vertex is not limited by 1 for all \(\mathbf {x}\). This new notion can be helpful when obfuscating ADPs.

  2. 2.

    The transformation is actually applied to an ADP. We describe it by BP because BP is a DAG and thus can be better understood. You can understand the RLS here in this way: it decodes the input ADP back to a BP first, then it does the transformation and encodes the resulting BP as the final ADP.

  3. 3.

    There are many potential ways of applying RLS. The RLS transformation here is the candidate given in [8].

  4. 4.

    For the same reason, we will ignore the sign of the minors in the rest of this paper.

  5. 5.

    Recall that when encoding a BP into an ADP, the lowermost row and the leftmost column are deleted. Thus, if the dimension of \(L(\mathbf {x})\) is \(\ell \), the number of nodes should be \(\ell +1\).

  6. 6.

    The family of ADPs here is only a subset of all ADPs our attack could apply.

References

  1. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_7

    Chapter  Google Scholar 

  2. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_5

    Chapter  Google Scholar 

  3. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10

    Chapter  Google Scholar 

  4. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15

    Chapter  Google Scholar 

  5. Applebaum, B., Ishai, Y, Kushilevitz, E.: Cryptography in NC\(^{\wedge }\)0. In: 45th FOCS, pp. 166–175. IEEE (2004)

    Google Scholar 

  6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_13

    Chapter  Google Scholar 

  7. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  8. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant programs: a framework for obfuscation and witness encryption. In: 11th ITCS, pp. 82:1–82:39. LIPIcs (2020)

    Google Scholar 

  9. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_22

    Chapter  Google Scholar 

  10. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a Nash equilibrium. In: 56th FOCS, pp. 1480–1498. IEEE (2015)

    Google Scholar 

  11. Bitansky N., Vaikuntanathan V.: Indistinguishability obfuscation from functional encryption. In: 56th FOCS, pp. 171–190. IEEE (2015)

    Google Scholar 

  12. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_4

    Chapter  Google Scholar 

  13. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings are not necessary for io: Circular-secure LWE suffices. Cryptology ePrint Archive, Report 2020/1024 (2020). https://eprint.iacr.org/2020/1024

  14. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_1

    Chapter  Google Scholar 

  15. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_10

    Chapter  Google Scholar 

  16. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_1

    Chapter  Google Scholar 

  17. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: 48th STOC, pp. 1115–1127. ACM (2016)

    Google Scholar 

  18. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_26

    Chapter  Google Scholar 

  19. Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D.: Succinct LWE sampling, random polynomials, and obfuscation. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 256–287. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_9

    Chapter  Google Scholar 

  20. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1

    Chapter  Google Scholar 

  21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE (2013)

    Google Scholar 

  22. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-to-state hard problems: new assumptions, new techniques, and simplification. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 97–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_4

    Chapter  Google Scholar 

  23. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In: 53rd STOC, pp. 736–749. ACM (2021)

    Google Scholar 

  24. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_20

    Chapter  Google Scholar 

  25. Hopkins, S., Jain, A., Lin, H.: Counterexamples to new circular security assumptions underlying iO. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 673–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_23

    Chapter  Google Scholar 

  26. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_21

    Chapter  Google Scholar 

  27. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: 5th ISTCS, pp. 174–183. IEEE (1997)

    Google Scholar 

  28. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_22

    Chapter  Google Scholar 

  29. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding polynomials over \(\mathbb{R}\) to build \(i\cal{O}\). In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_9

    Chapter  Google Scholar 

  30. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: 53rd STOC, pp. 60–73. ACM (2021)

    Google Scholar 

  31. Jain, A., Lin, H., Sahai, A.: Indistinguishability Obfuscation from LPN over F_p, DLIN, and PRGs in NC\(^{\wedge }\)0. Cryptology ePrint Archive, Report 2021/1334 (2021). https://eprint.iacr.org/2021/1334

  32. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: 47th STOC, pp. 419–428. ACM (2015)

    Google Scholar 

  33. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_2

    Chapter  Google Scholar 

  34. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

    Chapter  Google Scholar 

  35. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_21

    Chapter  Google Scholar 

  36. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: 57th FOCS, pp. 11–20. IEEE (2016)

    Google Scholar 

  37. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_22

    Chapter  Google Scholar 

  38. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: 46th STOC, pp. 475–484. ACM (2014)

    Google Scholar 

  39. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_5

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for their helpful comments. Y.C. is supported by Tsinghua University start-up funding and Shanghai Qi Zhi Institute. Yu Yu was supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0309705 and 2018YFA0704701) and the National Natural Science Foundation of China (Grant Nos. 62125204 and 61872236). Yu Yu also acknowledges the support from the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, L., Chen, Y., Yu, Y. (2022). Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06944-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06943-7

  • Online ISBN: 978-3-031-06944-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics