Skip to main content

Light-Weight File Fragments Classification Using Depthwise Separable Convolutions

  • Conference paper
  • First Online:
ICT Systems Security and Privacy Protection (SEC 2022)

Abstract

In digital forensics, classification of file fragments is an important step to complete the file carving process. There exist several approaches to identify the type of file fragments without relying on meta-data. Examples of such approaches are using features like header/footer and N-gram to identify the fragment type. Recently, deep learning models have been successfully used to build classification models to achieve this task. In this paper, we propose a light-weight file fragment classification using depthwise separable convolutional neural network model. We show that our proposed model does not only yield faster inference time, but also provide higher accuracy as compared to the state-of-art convolutional neural network based models. In particular, our model achieves an accuracy of 78.45% on the FFT-75 dataset with 100K parameters and 167M FLOPs, which is 24\(\times \) faster and 4–5\(\times \) smaller than the state-of-the-art classifier in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, I., Lhee, K.-S., Shin, H.-J., Hong, M.-P.: Fast content-based file type identification. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2011. IAICT, vol. 361, pp. 65–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24212-0_5

    Chapter  Google Scholar 

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  3. Alghafli, K., Yeun, C.Y., Damiani, E.: Techniques for measuring the probability of adjacency between carved video fragments: the vidcarve approach. IEEE Trans. Sustain. Comput. 6, 131–143 (2019)

    Article  Google Scholar 

  4. Amirani, M.C., Toorani, M., Mihandoost, S.: Feature-based type identification of file fragments. Secur. Commun. Netw. 6, 115–128 (2013)

    Article  Google Scholar 

  5. Beebe, N.L., Maddox, L.A., Liu, L., Sun, M.: Sceadan: using concatenated n-gram vectors for improved file and data type classification. IEEE Trans. Inf. Forensics Secur. 8(9), 1519–1530 (2013)

    Article  Google Scholar 

  6. Bennett, D.: The challenges facing computer forensics investigators in obtaining information from mobile devices for use in criminal investigations. Inf. Secur. J. Global Perspect. 21(3), 159–168 (2012)

    Article  Google Scholar 

  7. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 2546–2554. Curran Associates, Inc. (2011). http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

  8. Chen, Q., et al.: File fragment classification using grayscale image conversion and deep learning in digital forensics. In: 2018 IEEE Security and Privacy Workshops (SPW) (2018). https://doi.org/10.1109/spw.2018.00029

  9. Chollet, F.: Xception: deep learning with depthwise separable convolutions, pp. 1800–1807 (2017). https://doi.org/10.1109/CVPR.2017.195

  10. Darwin, I.F.: Libmagic (2008). ftp://ftp.astron.com/pub/file

  11. Dunne, R.A., Campbell, N.A.: On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function. In: Proceedings of 8th Australian Conference on the Neural Networks, Melbourne, vol. 181, p. 185. Citeseer (1997)

    Google Scholar 

  12. Fitzgerald, S., Mathews, G., Morris, C., Zhulyn, O.: Using nlp techniques for file fragment classification. Digital Invest. 9 (2012). https://doi.org/10.1016/j.diin.2012.05.008

  13. Fukushima, K.: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  Google Scholar 

  14. Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G.: Bringing science to digital forensics with standardized forensic corpora. Digital Invest. 6 (2009). https://doi.org/10.1016/j.diin.2009.06.016

  15. Garfinkel, S.L.: Carving contiguous and fragmented files with fast object validation. Digital Invest. 4, 2–12 (2007)

    Article  Google Scholar 

  16. Hiester, L.: File fragment classification using neural networks with lossless representations (2018)

    Google Scholar 

  17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  18. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzz. Knowl.-Based Syst. 6(02), 107–116 (1998)

    Article  Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  21. Howard, A., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017)

    Google Scholar 

  22. Karresand, M., Shahmehri, N.: Oscar - file type identification of binary data in disk clusters and ram pages. In: SEC (2006)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  24. Lei, Z.: Forensic analysis of unallocated space. Ph.D. thesis, UOIT (2011)

    Google Scholar 

  25. Li, Q., Ong, A., Suganthan, P., Thing, V.: A novel support vector machine approach to high entropy data fragment classification (2010)

    Google Scholar 

  26. Lin, X.: File carving. In: Introductory Computer Forensics, pp. 211–233. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00581-8_9

    Chapter  Google Scholar 

  27. Marziale, L., Richard, G.G., III., Roussev, V.: Massive threading: using gpus to increase the performance of digital forensics tools. Digital Invest. 4, 73–81 (2007)

    Article  Google Scholar 

  28. Memon, G.M.P.K.N.: File fragment type (fft) - 75 dataset (2019). https://doi.org/10.21227/kfxw-8084

  29. Mittal, G., Korus, P., Memon, N.: Fifty: large-scale file fragment type identification using convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 16, 28–41 (2020)

    Article  Google Scholar 

  30. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

  31. Pratt, L.Y.: Discriminability-based transfer between neural networks. In: Advances in Neural Information Processing Systems, pp. 204–211 (1993)

    Google Scholar 

  32. Rafique, M., Khan, M.: Exploring static and live digital forensics: methods, practices and tools. Int. J. Sci. Eng. Res. 4(10), 1048–1056 (2013)

    Google Scholar 

  33. Richard III, G.G., Roussev, V.: Scalpel: A frugal, high performance file carver. In: DFRWS. Citeseer (2005)

    Google Scholar 

  34. SIfre, L., Mallat, S.: Rigid-motion scattering for texture classification (2014)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

  36. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015). http://arxiv.org/abs/1409.4842

  37. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  38. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  39. Vulinović, K., Ivković, L., Petrović, J., Skračić, K., Pale, P.: Neural networks for file fragment classification. In: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1194–1198. IEEE (2019)

    Google Scholar 

  40. Wallace, G.K.: The jpeg still picture compression standard. Commun. ACM 34(4), 30–44 (1991). https://doi.org/10.1145/103085.103089

    Article  Google Scholar 

  41. Wang, F., Quach, T.T., Wheeler, J., Aimone, J.B., James, C.D.: Sparse coding for n-gram feature extraction and training for file fragment classification. IEEE Trans. Inf. Forensics Secur. 13(10), 2553–2562 (2018)

    Article  Google Scholar 

  42. Wang, Y., Su, Z., Song, D.: File fragment type identification with convolutional neural networks. Proceedings of the 2018 International Conference on Machine Learning Technologies - ICMLT 18 (2018). https://doi.org/10.1145/3231884.3231889

  43. Zheng, N., Wang, J., Wu, T., Xu, M.: A fragment classification method depending on data type. 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 1948–1953 (2015)

    Google Scholar 

  44. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the Interdisciplinary Research Center for Intelligent Secure Systems at KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhamad Felemban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saaim, K.M., Felemban, M., Alsaleh, S., Almulhem, A. (2022). Light-Weight File Fragments Classification Using Depthwise Separable Convolutions. In: Meng, W., Fischer-Hübner, S., Jensen, C.D. (eds) ICT Systems Security and Privacy Protection. SEC 2022. IFIP Advances in Information and Communication Technology, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-031-06975-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06975-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06974-1

  • Online ISBN: 978-3-031-06975-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics