Skip to main content

DAEMON: Dynamic Auto-encoders for Contextualised Anomaly Detection Applied to Security MONitoring

  • Conference paper
  • First Online:
ICT Systems Security and Privacy Protection (SEC 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 648))

  • 1090 Accesses

Abstract

The slow adoption rate of machine learning-based methods for novel attack detection by Security Operation Centers (SOC) analysts can be partly explained by their lack of data science expertise and the insufficient explainability of the results provided by these approaches. In this paper, we present an anomaly-based detection method that fuses events coming from heterogeneous sources into sets describing the same phenomenons and relies on a deep auto-encoder model to highlight anomalies and their context. To implicate security analysts and benefit from their expertise, we focus on limiting the need of data science knowledge during the configuration phase. Results on a lab environment, monitored using off-the-shelf tools, show good detection performances on several attack scenarios (F1 score \({\approx }0.9\)), and eases the investigation of anomalies by quickly finding similar anomalies through clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Timestamp excepted.

References

  1. Bertero, C., Roy, M., Sauvanaud, C., Trédan, G.: Experience report: log mining using natural language processing and application to anomaly detection. In: 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), pp. 351–360. IEEE (2017)

    Google Scholar 

  2. Brogi, G., Tong, V.V.T.: TerminAPTor: highlighting advanced persistent threats through information flow tracking. In: 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2016)

    Google Scholar 

  3. de Masson d’Autume, C., Ruder, S., Kong, L., Yogatama, D.: Episodic memory in lifelong language learning. CoRR abs/1906.01076 (2019)

    Google Scholar 

  4. Debnath, B., et al.: LogLens: a real-time log analysis system. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1052–1062. IEEE (2018)

    Google Scholar 

  5. Dey, A., Totel, E., Navers, S.: Heterogeneous security events prioritization using auto-encoders. In: Garcia-Alfaro, J., Leneutre, J., Cuppens, N., Yaich, R. (eds.) CRiSIS 2020. LNCS, vol. 12528, pp. 164–180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68887-5_10

    Chapter  Google Scholar 

  6. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proceedings Volumes 46, 12–17 (2013)

    Article  Google Scholar 

  7. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1285–1298. ACM (2017)

    Google Scholar 

  8. Elastic. Elastic common schema. https://github.com/elastic/ecs. Accessed 25 Mar 2021

  9. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  10. Hassan, W.U., Bates, A., Marino, D.: Tactical provenance analysis for endpoint detection and response systems. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 1172–1189. IEEE (2020)

    Google Scholar 

  11. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for anomaly detection. In: 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), pp. 207–218. IEEE (2016)

    Google Scholar 

  12. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114, 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  13. Leichtnam, L., Totel, E., Prigent, N., Mé, L.: Forensic analysis of network attacks: restructuring security events as graphs and identifying strongly connected sub-graphs. In: 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pp. 565–573. IEEE (2020)

    Google Scholar 

  14. Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X., Meng, D.: Log2vec: a heterogeneous graph embedding based approach for detecting cyber threats within enterprise. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1777–1794 (2019)

    Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  16. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.: HOLMES: real-time apt detection through correlation of suspicious information flows. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 1137–1152. IEEE (2019)

    Google Scholar 

  17. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089 (2018)

  18. MITRE. Att&ck data sources. https://github.com/mitre-attack/attack-datasources. Accessed 16 Mar 2021

  19. Pascoal, C., De Oliveira, M.R., Valadas, R., Filzmoser, P., Salvador, P., Pacheco, A.: Robust feature selection and robust PCA for internet traffic anomaly detection. In: 2012 Proceedings IEEE INFOCOM, pp. 1755–1763. IEEE (2012)

    Google Scholar 

  20. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31, 2435–2463 (1999)

    Article  Google Scholar 

  21. Pei, K., et al.: HERCULE: attack story reconstruction via community discovery on correlated log graph. In: Proceedings of the Annual Computer Security Applications Conference (ACSAC). ACM (2016)

    Google Scholar 

  22. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T.P., Wayne, G.: Experience replay for continual learning. CoRR abs/1811.11682 (2018)

    Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  24. Sadoddin, R., Ghorbani, A.A.: An incremental frequent structure mining framework for real-time alert correlation. Comput. Secur. 28, 153–173 (2009)

    Article  Google Scholar 

  25. Sprechmann, P., et al.: Memory-based parameter adaptation (2018)

    Google Scholar 

  26. Valeur, F.: Real-time intrusion detection alert correlation. Citeseer (2006)

    Google Scholar 

  27. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., Li, K.: Ai2: training a big data machine to defend. In: 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), pp. 49–54. IEEE (2016)

    Google Scholar 

  28. Viinikka, J., Debar, H., Mé, L., Lehikoinen, A., Tarvainen, M.: Processing intrusion detection alert aggregates with time series modeling. Inf. Fusion 10, 312–324 (2009)

    Article  Google Scholar 

  29. Xosanavongsa, C., Totel, E., Bettan, O.: Discovering correlations: a formal definition of causal dependency among heterogeneous events. In: 2019 IEEE European Symposium on Security and Privacy (EuroS P), pp. 340–355 (2019)

    Google Scholar 

  30. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674. ACM (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, A., Totel, E., Costé, B. (2022). DAEMON: Dynamic Auto-encoders for Contextualised Anomaly Detection Applied to Security MONitoring. In: Meng, W., Fischer-Hübner, S., Jensen, C.D. (eds) ICT Systems Security and Privacy Protection. SEC 2022. IFIP Advances in Information and Communication Technology, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-031-06975-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06975-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06974-1

  • Online ISBN: 978-3-031-06975-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics