Skip to main content

Evaluation of Circuit Lifetimes in Tor

  • Conference paper
  • First Online:
ICT Systems Security and Privacy Protection (SEC 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 648))

  • 884 Accesses

Abstract

Tor is a popular anonymity network which achieves its anonymity by constructing paths over three Tor relays, so-called circuits. Multiple streams that correspond to TCP connections can be multiplexed over a single circuit. By default, circuits are used for about ten minutes before switching to new circuits. Once that time limit is reached the circuit cannot be used for any new streams. This time-window is called the maximum circuit dirtiness (MCD). This paper analyzes the consequences of changing the MCD for all clients in the network and provides data on how changing the MCD affects various metrics of the Tor network. Our analysis shows that reducing the MCD to a sane value has almost no impact on the clients. Neither performance nor anonymity of the clients are significantly affected by the MCD. On the relays however halving the default MCD reduces the memory usage by about 20% while maintaining the original throughput and no measurable increase in CPU usage. Raising the MCD shows the opposite effect and increases memory usage. By drastically reducing the MCD, a significant number of extra circuits are created. From a performance point of view, the MCD should be reduced. Building on this work, side effects on specific attacks on Tor should be investigated in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://github.com/kevinkoester/tornettools_manager.

References

  1. AlSabah, M., Bauer, K., Elahi, T., Goldberg, I.: The path less travelled: overcoming tor’s bottlenecks with traffic splitting. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 143–163. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39077-7_8

    Chapter  Google Scholar 

  2. Diaz, C.: Anonymity metrics revisited. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2006)

    Google Scholar 

  3. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_5

    Chapter  Google Scholar 

  4. Google Inc., Let’s Make the Web Faster - Google Code, 26 May 2010. https://web.archive.org/web/20120324082535/https://code.google.com/speed/articles/web-metrics.html. Accessed 13 Jan 2022

  5. Hanley, H., et al.: DPSelect: a differential privacy based guard relay selection algorithm for Tor. In: PoPETs 2019, no. 2 (2019)

    Google Scholar 

  6. Heaptrack. KDE Applications. https://apps.kde.org/heaptrack/. Accessed 13 Jan 2022

  7. HTTP Archive: Page Weight (2021). https://archive.org/reports/page-weight. Accessed 06 Jan 2022

  8. Imani, M., Amirabadi, M., Wright, M.: Modified relay selection and circuit selection for faster tor. IET Commun. 13(17), 2723–2734 (2019)

    Article  Google Scholar 

  9. Jansen, R.: Shadow - the shadow simulator. https://shadow.github.io/. Accessed 13 Jan 2022

  10. Jansen, R.: Shadow/Tornettools. shadow, 10 July 2021. https://github.com/shadow/tornettools. Accessed 13 Jan 2022

  11. Jansen, R., Hopper, N.: Shadow: running tor in a box for accurate and efficient experimentation (2012)

    Google Scholar 

  12. Jansen, R., Johnson, A.: Safely measuring tor. In: CCS, pp. 1553–1567. ACM (2016)

    Google Scholar 

  13. Jansen, R., Tracey, J., Goldberg, I.: Once is never enough: foundations for sound statistical inference in tor network experimentation. arXiv preprint arXiv:2102.05196 (2021)

  14. Jansen, R., Traudt, M., Hopper, N.: Privacy-preserving dynamic learning of tor network traffic. In: CCS, pp. 1944–1961. ACM (2018). https://doi.org/10.1145/3243734.3243815

  15. Johnson, A., et al.: Users get routed: traffic correlation on tor by realistic adversaries. In: CCS, pp. 337–348. ACM (2013)

    Google Scholar 

  16. Kim, H., Lee, S., Kim, J.: Inferring browser activity and status through remote monitoring of storage usage. In: ACSAC, pp. 410–421. ACM (2016). https://doi.org/10.1145/2991079.2991080

  17. Kiran, K., et al.: Anonymity and performance analysis of stream isolation in tor network. In: ICCCNT, pp. 1–6. IEEE (2019)

    Google Scholar 

  18. Koch, R., Golling, M., Rodosek, G.D.: Disequilibrium: tor’s exit node selection under the stereoscope. In: Trustcom/BigDataSE/ISPA, vol. 1, pp. 942–949. IEEE (2015)

    Google Scholar 

  19. Mani, A., et al.: Understanding tor usage with privacy-preserving measurement. In: IMC, pp. 175–187 (2018)

    Google Scholar 

  20. Perry, M., et al.: The design and implementation of the tor browser [DRAFT]. 15 June 2018. https://2019.www.torproject.org/projects/torbrowser/design/. Accessed 13 Jan 2022

  21. Resource.h « Linux « Uapi « Include - Kernel/Git/Torvalds/Linux.Git - Linux Kernel Source Tree. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/resource.h#n66. Accessed 13 Jan 2022

  22. Jansen, R.: OnionTrace. shadow, 6 October 2020. https://github.com/shadow/oniontrace. Accessed 13 Jan 2022

  23. Jansen, R.: TGen. shadow, 6 October 2020. https://github.com/shadow/tgen. Accessed 13 Jan 2022

  24. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_4

    Chapter  Google Scholar 

  25. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  26. Shen, S., Gao, J., Wu, A.: Weakness identification and flow analysis based on tor network. In: CNS, pp. 90–94. IEEE (2018)

    Google Scholar 

  27. Sun, Y., et al.: RAPTOR: routing attacks on privacy in tor. In: Usenix Security, pp. 271–286 (2015)

    Google Scholar 

  28. Syverson, P., Dingledine, R., Mathewson, N.: Tor: the second-generation onion router, pp. 303–320 (2004)

    Google Scholar 

  29. The Tor Project. Welcome to Tor Metrics. https://metrics.torproject.org/. Accessed 13 Jan 2022

  30. Tor Project. Chutney - The Chutney Tool for Testing and Automating Tor Network Setup. https://gitweb.torproject.org/chutney.git. Accessed 13 Jan 2022

  31. Wacek, C., et al.: An empirical evaluation of relay selection in tor. In: NDSS (2013)

    Google Scholar 

  32. Wang, T., Goldberg, I.: Improved website fingerprinting on tor. In: WPES, pp. 201–212. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Köster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Köster, K., Marx, M., Kunstmann, A., Federrath, H. (2022). Evaluation of Circuit Lifetimes in Tor. In: Meng, W., Fischer-Hübner, S., Jensen, C.D. (eds) ICT Systems Security and Privacy Protection. SEC 2022. IFIP Advances in Information and Communication Technology, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-031-06975-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06975-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06974-1

  • Online ISBN: 978-3-031-06975-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics