Skip to main content

A Programming Interface for Creating Data According to the SPAR Ontologies and the OpenCitations Data Model

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2022)

Abstract

The OpenCitations Data Model (OCDM) is a data model for bibliographic metadata and citations based on the SPAR Ontologies and developed by OpenCitations to expose all the data of its collections as sets of RDF statements compliant with an ontology named OpenCitations Ontology. In this paper, we introduce oc_ocdm, i.e. a Python library developed for creating OCDM-compliant RDF data even if the programmer has no expertise in Semantic Web technologies. After an introduction of the library and its main characteristics, we show a number of projects within the OpenCitations infrastructure that adopt it as their building block unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://python-poetry.org/.

  2. 2.

    https://github.com/RDFLib/rdflib.

  3. 3.

    https://www.vosviewer.com/.

  4. 4.

    https://citationgecko.com/.

  5. 5.

    https://visualbib.uniud.it/en/project/.

  6. 6.

    https://www.otzberg.net/oahelper/.

  7. 7.

    https://dblp.org.

  8. 8.

    https://lens.org.

  9. 9.

    https://www.openaire.eu/.

  10. 10.

    https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata.

  11. 11.

    https://github.com/opencitations/meta.

  12. 12.

    https://github.com/opencitations/oc_graphenricher.

  13. 13.

    https://github.com/opencitations/time-agnostic-library.

  14. 14.

    https://github.com/RDFLib/pySHACL.

References

  1. Ammar, W., et al.: Construction of the literature graph in semantic scholar. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 3 (Industry Papers), pp. 84–91. Association for Computational Linguistics, New Orleans - Louisiana (2018). https://doi.org/10.18653/v1/N18-3011.https://aclanthology.org/N18-3011

  2. Beck, K.: Test-Driven Development: By Example. The Addison-Wesley signature series, Addison-Wesley, Boston (2003)

    Google Scholar 

  3. Bertin, M., Atanassova, I., Sugimoto, C.R., Lariviere, V.: The linguistic patterns and rhetorical structure of citation context: an approach using n-grams. Scientometrics 109(3), 1417–1434 (2016). https://doi.org/10.1007/s11192-016-2134-8

    Article  Google Scholar 

  4. Colavizza, G., Romanello, M.: Citation mining of humanities journals: the progress to date and the challenges ahead. J. Eur. Periodical Stud. 4(1), 36–53 (2019)

    Article  Google Scholar 

  5. Corman, J., Reutter, J.L., Savković, O.: Semantics and validation of recursive SHACL. In: Vrandečić, D. (ed.) ISWC 2018. LNCS, vol. 11136, pp. 318–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_19

    Chapter  Google Scholar 

  6. Daquino, M., Heibi, I., Peroni, S., Shotton, D.: Creating RESTful APIs over SPARQL endpoints using RAMOSE (2020). http://arxiv.org/abs/2007.16079

  7. Daquino, M., et al.: The opencitations data model. In: Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 447–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_28

    Chapter  Google Scholar 

  8. Daquino, M., Tiddi, I., Peroni, S., Shotton, D.: Creating open citation data with BCite. In: Emerging Topics in Semantic Technologies, pp. 83–93. IOS Press, Amesterdam (2018)

    Google Scholar 

  9. Dunsire, G., Fritz, D., Fritz, R.: Instructions, interfaces, and interoperable data: the rimmf experience with RDA revisited. Cataloging Classif. Q. 58(1), 44–58 (2020)

    Article  Google Scholar 

  10. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontologies with graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 320–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11955-7_42

    Chapter  Google Scholar 

  11. Färber, M.: The microsoft academic knowledge graph: a linked data source with 8 billion triples of scholarly data. In: Ghidini, C. (ed.) ISWC 2019. LNCS, vol. 11779, pp. 113–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_8

    Chapter  Google Scholar 

  12. Franc, Y.L., Coen, G., Essen, J.P.V., Bonino, L., Lehväslaiho, H., Staiger, C.: D2.2 FAIR Semantics: First Recommendations (2020)

    Google Scholar 

  13. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology evaluation and validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 140–154. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_13

    Chapter  Google Scholar 

  14. Garijo, D., Poveda-Villalón, M.: Best Practices for Implementing FAIR Vocabularies and Ontologies on the Web. Applications and practices in ontology design, extraction, and reasoning, vol. 49, p. 39 (2020)

    Google Scholar 

  15. Hammond, T., Pasin, M., Theodoridis, E.: Data integration and disintegration: managing springer nature SciGraph with SHACL and OWL. In: International Semantic Web Conference (Posters, Demos & Industry Tracks) (2017)

    Google Scholar 

  16. Heibi, I., Peroni, S., Shotton, D.: Crowdsourcing open citations with CROCI-An analysis of the current status of open citations, and a proposal (2019). arXiv preprint arXiv:1902.02534

  17. Heibi, I., Peroni, S., Shotton, D.: Enabling text search on SPARQL endpoints through OSCAR. Data Sci. 2(1–2), 205–227 (2019)

    Article  Google Scholar 

  18. Heibi, I., Peroni, S., Shotton, D.: Software review: COCI, the opencitations index of crossref open DOI-to-DOI citations. Scientometrics 121(2), 1213–1228 (2019). https://doi.org/10.1007/s11192-019-03217-6

    Article  Google Scholar 

  19. Hillmann, D., Coyle, K., Phipps, J., Dunsire, G.: RDA vocabularies: process, outcome, use. D-Lib Mag. 16(1/2), 6 (2010)

    Google Scholar 

  20. Hosseini, A., Ghavimi, B., Boukhers, Z., Mayr, P.: EXCITE-A toolchain to extract, match and publish open literature references. In: 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 432–433. IEEE (2019)

    Google Scholar 

  21. Klopfenstein, D., et al.: GOATOOLS: a python library for gene ontology analyses. Sci. Rep. 8(1), 1–17 (2018)

    Article  Google Scholar 

  22. Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked data dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_15

    Chapter  Google Scholar 

  23. Larralde, M., Philipp, A., Henrie, A., Himmelstein, D., Mitchell, S., Sakaguchi, T.: althonos/pronto: 2.4.3 (2021). https://doi.org/10.5281/zenodo.5153400

  24. Lauscher, A., et al.: Linked open citation database: enabling libraries to contribute to an open and interconnected citation graph. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, pp. 109–118 (2018)

    Google Scholar 

  25. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: the PROV ontology. W3C Recommendation 30 Apr 2013 (2013). http://www.w3.org/TR/2013/REC-prov-o-20130430/

  26. Peroni, S., Shotton, D.: The SPAR ontologies. In: Vrandečić, D. (ed.) ISWC 2018. LNCS, vol. 11137, pp. 119–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_8

    Chapter  Google Scholar 

  27. Peroni, S., Shotton, D.: OpenCitations, an infrastructure organization for open scholarship. Quant. Sci. Stud. 1(1), 428–444 (2020)

    Article  Google Scholar 

  28. Peroni, S., Shotton, D., Vitali, F.: A document-inspired way for tracking changes of RDF data - the case of the OpenCitations Corpus. In: Hollink, L., Darányi, S., Meroño Peñuela, A., Kontopoulos, E. (eds.) Detection, Representation and Management of Concept Drift in Linked Open Data. CEUR Workshop Proceedings, vol. 1799, pp. 26–33. CEUR-WS, Aachen (2016). http://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_4.pdf

  29. Persiani, S.: opencitations/oc_ocdm (version 6.0.2) (2021). https://doi.org/10.5281/zenodo.5770647

  30. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF validation and transformation language. In: Proceedings of the 10th International Conference on Semantic Systems, pp. 32–40. SEM 2014, Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2660517.2660523

  31. Riungu-Kalliosaari, L., Hooft, R., Kuijpers, S., Parland-von Essen, J., Tana, J.: D2.4 2nd report on FAIR requirements for persistence and interoperability (2020)

    Google Scholar 

  32. Senderov, V., et al.: OpenBiodiv-O: ontology of the openbiodiv knowledge management system. J. Biomed. Semant. 9(1), 1–15 (2018). https://doi.org/10.1186/s13326-017-0174-5

    Article  MathSciNet  Google Scholar 

  33. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. biotech. 25(11), 1251–1255 (2007)

    Article  Google Scholar 

  34. Willighagen, E.: Adoption of the citation typing ontology by the journal of cheminformatics. J. Cheminformatics 12(1), 1–3 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the project “Open Biomedical Citations in Context Corpus" (Wellcome Trust, Grant n. 214471/Z/18/Z) and the project “Wikipedia Citations in Wikidata" (Wikimedia Foundation, https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata), and partially funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 101017452 (OpenAIRE-Nexus). We would like to thank (in alphabetic order) Fabio Mariani, Arcangelo Massari, and Gabriele Pisciotta for the constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Peroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Persiani, S., Daquino, M., Peroni, S. (2022). A Programming Interface for Creating Data According to the SPAR Ontologies and the OpenCitations Data Model. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06981-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06980-2

  • Online ISBN: 978-3-031-06981-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics