Abstract
In recent years, the growing application of Knowledge Graphs to new and diverse domains has created the need to make these resources accessible and understandable by users with increasingly diverse backgrounds. Visualization techniques have been widely employed as means to facilitate the exploration and comprehension of such data sources. Moreover, the emerging use of Knowledge Graph Embeddings as input features of Machine Learning methods has given even more visibility to this kind of representation, but raising the new issue of understandability and interpretability of such embeddings. In this paper, we show how visualization techniques can be used to jointly explore and interpret both Knowledge Graphs and Graph Embeddings. We present Stunning Doodle, a tool that enriches the classical visualization of Knowledge Graphs with additional information meant to enable the visual analysis and comprehension of Graph Embeddings. The idea is to help the user figure out the logical connection between (1) the information captured by the Graph Embeddings and (2) the structure and semantics of the Knowledge Graph from which they are generated. We detail the use of Stunning Doodle in a real-world scenario and we show how it has been helpful to interpret different Graph Embeddings and to choose the most suitable with respect to a specific final goal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antoniazzi, F., Viola, F.: RDF Graph Visualization Tools: A Survey, November 2018. https://doi.org/10.23919/FRUCT.2018.8588069
Asprino, L., Colonna, C., Mongiovì, M., Porena, M., Presutti, V.: Pattern-based visualization of knowledge graphs. arXiv preprint arXiv:2106.12857 (2021)
Bikakis, N., Liagouris, J., Kromida, M., Papastefanatos, G., Sellis, T.: Towards scalable visual exploration of very large RDF graphs. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 9–13. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_2
Bikakis, N., Liagouris, J., Krommyda, M., Papastefanatos, G., Sellis, T.: GraphVizdb: a scalable platform for interactive large graph visualization. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 1342–1345. IEEE (2016)
Camarda, D.V., Mazzini, S., Antonuccio, A.: Lodlive, exploring the web of data. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 197–200 (2012)
Desimoni, F., Po, L.: Empirical evaluation of linked data visualization tools. Future Gener. Comput. Syst. 112, 258–282 (2020)
Ernst, P., Meng, C., Siu, A., Weikum, G.: KnowLife: a knowledge graph for health and life sciences. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 1254–1257 (2014)
Ettorre, A.: antoniaettorre/stunning_doodle: First Version, December 2021. https://doi.org/10.5281/zenodo.5769192
Ettorre, A., Bobasheva, A., Faron, C., Michel, F.: A systematic approach to identify the information captured by knowledge graph embeddings. In: IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) (2021)
Ettorre, A., Rocha Rodríguez, O., Faron, C., Michel, F., Gandon, F.: A knowledge graph enhanced learner model to predict outcomes to questions in the medical field. In: Keet, C.M., Dumontier, M. (eds.) EKAW 2020. LNCS (LNAI), vol. 12387, pp. 237–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61244-3_17
Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 4289–4300 (2018)
Liu, J., Lu, Z., Du, W.: Combining enterprise knowledge graph and news sentiment analysis for stock price prediction. In: Proceedings of the 52nd Hawaii International Conference on System Sciences (2019)
Mahdisoltani, F., Biega, J., Suchanek, F.: YAGO3: a knowledge base from multilingual Wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Conference (2014)
Micsik, A., Turbucz, S., Györök, A.: LODmilla: a linked data browser for all (2014)
Nuzzolese, A.G., Presutti, V., Gangemi, A., Peroni, S., Ciancarini, P.: Aemoo: linked data exploration based on knowledge patterns. Semant. Web 8(1), 87–112 (2017)
Palombi, O., Jouanot, F., Nziengam, N., Omidvar-Tehrani, B., Rousset, M.C., Sanchez, A.: OntoSIDES: ontology-based student progress monitoring on the national evaluation system of French Medical Schools. Artif. Intell. Med. 96, 59–67 (2019)
Po, L., Malvezzi, D.: High-level visualization over big linked data. In: International Semantic Web Conference (P&D/Industry/BlueSky) (2018)
Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health knowledge graph from electronic medical records. Sci. Rep. 7, 1–11 (2017)
Santana-Pérez, I.: Graphless: using statistical analysis and heuristics for visualizing large datasets. In: VOILA@ ISWC 2187, pp. 1–12 (2018)
Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: RDFDigest+: a summary-driven system for KBs exploration. In: International Semantic Web Conference (P&D/Industry/BlueSky) (2018)
Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 32, 9240 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ettorre, A., Bobasheva, A., Michel, F., Faron, C. (2022). Stunning Doodle: A Tool for Joint Visualization and Analysis of Knowledge Graphs and Graph Embeddings. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-06981-9_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06980-2
Online ISBN: 978-3-031-06981-9
eBook Packages: Computer ScienceComputer Science (R0)