Skip to main content

Stunning Doodle: A Tool for Joint Visualization and Analysis of Knowledge Graphs and Graph Embeddings

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2022)

Abstract

In recent years, the growing application of Knowledge Graphs to new and diverse domains has created the need to make these resources accessible and understandable by users with increasingly diverse backgrounds. Visualization techniques have been widely employed as means to facilitate the exploration and comprehension of such data sources. Moreover, the emerging use of Knowledge Graph Embeddings as input features of Machine Learning methods has given even more visibility to this kind of representation, but raising the new issue of understandability and interpretability of such embeddings. In this paper, we show how visualization techniques can be used to jointly explore and interpret both Knowledge Graphs and Graph Embeddings. We present Stunning Doodle, a tool that enriches the classical visualization of Knowledge Graphs with additional information meant to enable the visual analysis and comprehension of Graph Embeddings. The idea is to help the user figure out the logical connection between (1) the information captured by the Graph Embeddings and (2) the structure and semantics of the Knowledge Graph from which they are generated. We detail the use of Stunning Doodle in a real-world scenario and we show how it has been helpful to interpret different Graph Embeddings and to choose the most suitable with respect to a specific final goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/antoniaettorre/stunning_doodle.

  2. 2.

    https://projector.tensorflow.org.

References

  1. Antoniazzi, F., Viola, F.: RDF Graph Visualization Tools: A Survey, November 2018. https://doi.org/10.23919/FRUCT.2018.8588069

  2. Asprino, L., Colonna, C., Mongiovì, M., Porena, M., Presutti, V.: Pattern-based visualization of knowledge graphs. arXiv preprint arXiv:2106.12857 (2021)

  3. Bikakis, N., Liagouris, J., Kromida, M., Papastefanatos, G., Sellis, T.: Towards scalable visual exploration of very large RDF graphs. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 9–13. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9_2

    Chapter  Google Scholar 

  4. Bikakis, N., Liagouris, J., Krommyda, M., Papastefanatos, G., Sellis, T.: GraphVizdb: a scalable platform for interactive large graph visualization. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 1342–1345. IEEE (2016)

    Google Scholar 

  5. Camarda, D.V., Mazzini, S., Antonuccio, A.: Lodlive, exploring the web of data. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 197–200 (2012)

    Google Scholar 

  6. Desimoni, F., Po, L.: Empirical evaluation of linked data visualization tools. Future Gener. Comput. Syst. 112, 258–282 (2020)

    Article  Google Scholar 

  7. Ernst, P., Meng, C., Siu, A., Weikum, G.: KnowLife: a knowledge graph for health and life sciences. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 1254–1257 (2014)

    Google Scholar 

  8. Ettorre, A.: antoniaettorre/stunning_doodle: First Version, December 2021. https://doi.org/10.5281/zenodo.5769192

  9. Ettorre, A., Bobasheva, A., Faron, C., Michel, F.: A systematic approach to identify the information captured by knowledge graph embeddings. In: IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) (2021)

    Google Scholar 

  10. Ettorre, A., Rocha Rodríguez, O., Faron, C., Michel, F., Gandon, F.: A knowledge graph enhanced learner model to predict outcomes to questions in the medical field. In: Keet, C.M., Dumontier, M. (eds.) EKAW 2020. LNCS (LNAI), vol. 12387, pp. 237–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61244-3_17

    Chapter  Google Scholar 

  11. Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  12. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 4289–4300 (2018)

    Google Scholar 

  13. Liu, J., Lu, Z., Du, W.: Combining enterprise knowledge graph and news sentiment analysis for stock price prediction. In: Proceedings of the 52nd Hawaii International Conference on System Sciences (2019)

    Google Scholar 

  14. Mahdisoltani, F., Biega, J., Suchanek, F.: YAGO3: a knowledge base from multilingual Wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Conference (2014)

    Google Scholar 

  15. Micsik, A., Turbucz, S., Györök, A.: LODmilla: a linked data browser for all (2014)

    Google Scholar 

  16. Nuzzolese, A.G., Presutti, V., Gangemi, A., Peroni, S., Ciancarini, P.: Aemoo: linked data exploration based on knowledge patterns. Semant. Web 8(1), 87–112 (2017)

    Article  Google Scholar 

  17. Palombi, O., Jouanot, F., Nziengam, N., Omidvar-Tehrani, B., Rousset, M.C., Sanchez, A.: OntoSIDES: ontology-based student progress monitoring on the national evaluation system of French Medical Schools. Artif. Intell. Med. 96, 59–67 (2019)

    Article  Google Scholar 

  18. Po, L., Malvezzi, D.: High-level visualization over big linked data. In: International Semantic Web Conference (P&D/Industry/BlueSky) (2018)

    Google Scholar 

  19. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health knowledge graph from electronic medical records. Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  20. Santana-Pérez, I.: Graphless: using statistical analysis and heuristics for visualizing large datasets. In: VOILA@ ISWC 2187, pp. 1–12 (2018)

    Google Scholar 

  21. Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: RDFDigest+: a summary-driven system for KBs exploration. In: International Semantic Web Conference (P&D/Industry/BlueSky) (2018)

    Google Scholar 

  22. Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 32, 9240 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Ettorre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ettorre, A., Bobasheva, A., Michel, F., Faron, C. (2022). Stunning Doodle: A Tool for Joint Visualization and Analysis of Knowledge Graphs and Graph Embeddings. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06981-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06980-2

  • Online ISBN: 978-3-031-06981-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics