Skip to main content

Capturing the Semantics of Smell: The Odeuropa Data Model for Olfactory Heritage Information

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2022)

Abstract

Smells are a key sensory experience. They are part of a multi-billion euro industry and gaining traction in different research fields such as museology, art, history, and digital humanities. Until now, a semantic model for describing smells and their associated experiences was lacking. In this paper, we present the Odeuropa data model for olfactory heritage information. The model has been developed in collaboration with olfactory and art historians. Our model can express the various stages in a smell’s lifetime – creation, being experienced, deodorisation – and their relation to locations, times and the agents that interact with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is relevant the inclusion of the perfumes of Grasse in the UNESCO list. Source: https://bit.ly/3opPRin. Last visited: 15/03/2022.

  2. 2.

    Examples in Japan: https://bit.ly/3u4ySFD and in France: https://bit.ly/3rYpv7Q.

  3. 3.

    https://www.odeuropa.eu.

  4. 4.

    https://www.osmotheque.fr/en/the-collection/.

  5. 5.

    https://odeuropa.eu/objectives-timeline/.

  6. 6.

    https://en.wikipedia.org/wiki/Fragrance_wheel Last visited: 07/12/2021.

  7. 7.

    While some of these are clearly carriers (wind, bottle) and other smell sources (jasmine, sulphur), some specific elements can embody any of the two role depending on the context (smoke). For this reason, we decided to have a single vocabulary including all terms, reporting the preferred role when possible.

  8. 8.

    In that case, there will not be a Smell Interaction, but a single Smell Emission having as source the union of the different ingredients.

References

  1. Achichi, M., Lisena, P., Todorov, K., Troncy, R., Delahousse, J.: DOREMUS: a graph of linked musical works. In: Vrandečić, D., et al. (eds.) The Semantic Web – ISWC 2018. LNCS, vol. 11137, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_1

  2. Almagor, U.: Odors and private language: observations on the phenomenology of scent. Hum. Stud. 13(3), 253–274 (1990). https://doi.org/10.1007/BF00142757

    Google Scholar 

  3. Antonini, A., et al.: Understanding the phenomenology of reading through modelling. Semant. Web 12, 191–217 (2021). https://doi.org/10.3233/SW-200396

  4. Arn, H., Acree, T.: Flavornet: a database of aroma compounds based on odor potency in natural products. Dev. Food Sci. 40, 27–28 (1998)

    Google Scholar 

  5. Bembibre, C., Strlič, M.: Smell of heritage: a framework for the identification, analysis and archival of historic odours. Herit. Sci. 5(1), 2 (2017). https://doi.org/10.1186/s40494-016-0114-1

  6. Bembibre Jacobo, C.: Smell of Heritage. Ph.D. Thesis, UCL (University College London) (2020)

    Google Scholar 

  7. de Boer, V., van Doornik, J., Buitinck, L., Marx, M., Veken, T., Ribbens, K.: Linking the kingdom: enriched access to a historiographical text. In: Proceedings of the Seventh International Conference on Knowledge Capture, pp. 17–24 (2013)

    Google Scholar 

  8. Brooks, J., et al. (eds.): STT21: Smell, Taste, and Temperature Interfaces workshop. Yokohama, Japan (2021). https://stt21.plopes.org/

  9. Brud, W.: Words versus odours, how perfumers communicate. Perfum. Flavorist 11, 27–44 (1986)

    Google Scholar 

  10. Carriero, V.A., et al.: The landscape of ontology reuse approaches. In: Applications and Practices in Ontology Design, Extraction, and Reasoning, pp. 21–38. IOS Press (2020)

    Google Scholar 

  11. Carriero, V.A., et al.: ArCo: the Italian cultural heritage knowledge graph. In: Ghidini, C., et al. (eds.) The Semantic Web – ISWC 2019. LNCS, vol. 11779, pp. 36–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_3

  12. Datta, S.K., Coughlin, T.: An IoT architecture enabling digital senses. In: 2016 IEEE 6th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), pp. 67–68. IEEE (2016)

    Google Scholar 

  13. Dijkshoorn, C., et al.: The Rijksmuseum collection as linked data. Semant. Web J. 9, 221–230 (2018)

    Google Scholar 

  14. Doerr, M.: The CIDOC conceptual reference module: an ontological approach to semantic interoperability of metadata. AI Mag. 24(3), 75 (2003)

    Google Scholar 

  15. Doerr, M., Kritsotaki, A., Rousakis, Y., Hiebel, G., Theodoridou, M.: Definition of the CRMsci an extension of CIDOC-CRM to support scientific observation. Forth-Institution of Computer Science (2015)

    Google Scholar 

  16. Dravnieks, A.: Atlas of Odor Character Profiles. American Society for Testing and Materials, Philadelphia (1985)

    Google Scholar 

  17. Ehrich, S., Verbeek, C., Zinnen, M., Marx, L., Bembibre, C., Leemans, I.: Nose first. Towards an olfactory gaze for digital art history. In: First International Workshop on Multisensory Data and Knowledge (MDK), Zaragoza, Spain (2021)

    Google Scholar 

  18. Graves, M., Constabaris, A., Brickley, D.: FOAF: connecting people on the semantic web. Cat. Classif. Q. 43(3–4), 191–202 (2007). https://doi.org/10.1300/J104v43n03_10

  19. Guest, C., et al.: Feasibility of integrating canine olfaction with chemical and microbial profiling of urine to detect lethal prostate cancer. PLoS ONE 16(2), e0245530 (2021)

    Google Scholar 

  20. Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)

    Google Scholar 

  21. Hartig, O.: The RDF* and SPARQL* approach to annotate statements in RDF and to reconcile RDF and property graphs. In: W3C Workshop on Web Standardization for Graph Data, Berlin, Germany (2019)

    Google Scholar 

  22. Henshaw, V.: Urban Smellscapes: Understanding and Designing City Smell Environments. Routledge/Taylor & Francis Group, New York (2014)

    Google Scholar 

  23. Howes, D.: Introduction to sensory museology. Senses Soc. 9(3), 259–267 (2014). https://doi.org/10.2752/174589314X14023847039917

  24. Howes, D.: Empire of The Senses: The Sensual Culture Reader. Routledge, London (2021)

    Google Scholar 

  25. Howes, D., Classen, C.: Ways of Sensing: Understanding the Senses in Society. Routledge, London (2013)

    Google Scholar 

  26. Isaac, A., Haslhofer, B.: Europeana linked open data - data.europeana.eu. Semant. Web J. 4, 291–297 (2013)

    Google Scholar 

  27. Jaubert, J.N., Tapiero, C., Dore, J.: The field of odors: toward a universal language for odor relationships. Perfum. Flavorist 20, 1 (1995)

    Google Scholar 

  28. Jenner, M.S.: Follow your nose? Smell, smelling, and their histories. Am. Hist. Rev. 116(2), 335–351 (2011)

    Google Scholar 

  29. Kettler, A.: The Smell of Slavery: Olfactory Racism and the Atlantic World. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  30. Kiechle, M.A.: Smell Detectives: An Olfactory History of Nineteenth-century Urban America. University of Washington Press, Seattle (2017)

    Google Scholar 

  31. Koho, M., Ikkala, E., Leskinen, P., Tamper, M., Tuominen, J., Hyvönen, E.: WarSampo knowledge graph: Finland in the second world war as linked open data. Semant. Web J. 12, 265–278 (2021)

    Google Scholar 

  32. Krusemark, E.A., Novak, L.R., Gitelman, D.R., Li, W.: When the sense of smell meets emotion: anxiety-state-dependent olfactory processing and neural circuitry adaptation. J. Neurosci. 33(39), 15324–15332 (2013)

    Google Scholar 

  33. Le Guérer, A.: Parfum. Le), Des origines à nos jours. Odile Jacob (2005)

    Google Scholar 

  34. Lebo, T., et al.: PROV-O: the PROV ontology. Technical report, World Wide Web Consortium (2013)

    Google Scholar 

  35. Leon, A., Gaitán, M., Insa, I., Sebastián, J., Alba, E.: SILKNOW. designing a thesaurus about historical silk for small and medium-sized textile museums. In: Ortiz Calderón, P., Pinto Puerto, Verhagen, P., Prieto, A. (eds.) Science and Digital Technology for Cultural Heritage. CRC Press, London (2020). https://doi.org/10.1201/9780429345470-34

  36. Licon, C.C., et al.: Chemical features mining provides new descriptive structure-odor relationships. PLoS Comput. Biol. 15(4), e1006945 (2019)

    Google Scholar 

  37. Lisena, P., et al.: Controlled vocabularies for music metadata. In: 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France (2018). http://ismir2018.ircam.fr/doc/pdfs/68_Paper.pdf

  38. Lisena, P., Troncy, R.: Representing complex knowledge for exploration and recommendation: the case of classical music information. In: Cota, G., Daquino, M., Pozzato, G.L. (eds.) Applications and Practices in Ontology Design, Extraction, and Reasoning, Studies on the Semantic Web Series (SSWS), vol. 49, pp. 107–123. IOS Press (2020). https://doi.org/10.3233/SSW200038

  39. Lisena, P., van Erp, M., Bembibre, C., Leemans, I.: Data mining and knowledge graphs as a backbone for advanced olfactory experiences. In: Brooks et al. [8] (2021). https://stt21.plopes.org/wp-content/uploads/2021/05/STT2021_Odeuropa.pdf

  40. Mathis, S., et al.: Olfaction and anosmia: from ancient times to COVID-19. J. Neurol. Sci. 425, 117433 (2021). https://doi.org/10.1016/j.jns.2021.117433, https://www.sciencedirect.com/science/article/pii/S0022510X21001271

  41. de Matos, P., et al.: ChEBI: a chemistry ontology and database. J. Cheminform. 2(1), 1 (2010). https://doi.org/10.1186/1758-2946-2-S1-P6

  42. Meroño-Peñuela, A., et al.: The midi linked data cloud. In: International Semantic Web Conference, vol. 10588, pp. 156–164. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_16

  43. Miles, A., Pérez-Agüera, J.R.: SKOS: simple knowledge organisation for the web. Cat. Classif. Q. 43(3–4), 69–83 (2007)

    Google Scholar 

  44. Naravane, T., Lange, M.: Ontological framework for representation of tractable flavor: food phenotype, sensation, perception. In: ICBO (2018)

    Google Scholar 

  45. Noy, N.F., Hafner, C.D.: The state of the art in ontology design: a survey and comparative review. AI Mag. 18, 53 (1997). https://doi.org/10.1609/aimag.v18i3.1306, https://ojs.aaai.org/index.php/aimagazine/article/view/1306

  46. Pasin, M., Motta, E.: Ontological requirements for annotation and navigation of philosophical resources. Synthese 182, 235–267 (2009). https://doi.org/10.1007/s11229-009-9660-3

  47. Perkins, C., McLean, K.: Smell walking and mapping, chap. 10. Manchester University Press, Manchester (2020). https://doi.org/10.7765/9781526152732.00017, https://www.manchesterhive.com/view/9781526152732/9781526152732.00017.xml

  48. Philpott, C.M., Bennett, A., Murty, G.E.: A brief history of olfaction and olfactometry. J. Laryngol. Otol. 122(7), 657–662 (2008). https://doi.org/10.1017/S0022215107001314

  49. Sanchez-Lengeling, B., Wei, J.N., Lee, B.K., Gerkin, R.C., Aspuru-Guzik, A., Wiltschko, A.B.: Machine learning for scent: learning generalizable perceptual representations of small molecules. arXiv preprint arXiv:1910.10685 (2019)

  50. Schleider, T., et al.: The SILKNOW knowledge graph. Semant. Web 1–16 (2021)

    Google Scholar 

  51. Schouten, S., de Boer, V., Petram, L., van Erp, M.: The wind in our sails: developing a reusable and maintainable Dutch maritime history knowledge graph. In: Proceedings of the 11th on Knowledge Capture Conference, K-CAP 2021, pp. 97–104. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3460210.3493548

  52. Sharma, A., Saha, B.K., Kumar, R., Varadwaj, P.K.: OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions. Nucleic Acids Res. (2021). https://doi.org/10.1093/nar/gkab763

  53. Shaw, R., Troncy, R., Hardman, L.: LODE: linking open descriptions of events. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) The Semantic Web, ASWC 2009. LNCS, vol. 5926, pp. 153–167. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10871-6_11

  54. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)

    Google Scholar 

  55. Stamou, G., van Ossenbruggen, J., Pan, J.Z., Schreiber, G., Smith, J.R.: Multimedia annotations on the semantic web. IEEE Multimedia 13(1), 86–90 (2006)

    Google Scholar 

  56. van Suchtelen, A.: Fleeting Scents in Colour. Mauritshuis, Den Haag, the Netherlands (2021)

    Google Scholar 

  57. Suominen, O., et al.: Publishing SKOS vocabularies with Skosmos. Manuscript submitted for review (2015)

    Google Scholar 

  58. Torta, G., Ardissono, L., La Riccia, L., Savoca, A., Voghera, A.: Representing ecological network specifications with semantic web techniques. In: KEOD-International Conference on Knowledge Engineering and Ontology Development, vol. 2, pp. 86–97. SCITEPRESS-Science and Technology Publications, Lda. (2017)

    Google Scholar 

  59. Tullett, W.: Smell in Eighteenth-Century England: A Social Sense. Oxford University Press, Oxford (2019)

    Google Scholar 

  60. Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the Simple Event Model (SEM). J. Web Seman. 9(2), 128–136 (2011)

    Google Scholar 

  61. Van Harreveld, A.P., Heeres, P., Harssema, H.: A review of 20 years of standardization of odor concentration measurement by dynamic olfactometry in Europe. J. Air Waste Manag. Assoc. 49(6), 705–715 (1999)

    Google Scholar 

  62. Verbeek, C., van Campen, C.: Inhaling memories. Senses Soc. 8(2), 133–148 (2013). https://doi.org/10.2752/174589313X13589681980696

  63. Wu, D., Luo, D., Wong, K.Y., Hung, K.: POP-CNN: predicting odor pleasantness with convolutional neural network. IEEE Sens. J. 19(23), 11337–11345 (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by European Union’s Horizon 2020 research and innovation programme within the Odeuropa project (grant agreement No. 101004469). Smells that helped get this paper out: citrus (to boost our energy levels), rosemary (to keep us alert) and the smell of hell (to keep us on our toes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Lisena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lisena, P. et al. (2022). Capturing the Semantics of Smell: The Odeuropa Data Model for Olfactory Heritage Information. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06981-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06980-2

  • Online ISBN: 978-3-031-06981-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics