Abstract
Smells are a key sensory experience. They are part of a multi-billion euro industry and gaining traction in different research fields such as museology, art, history, and digital humanities. Until now, a semantic model for describing smells and their associated experiences was lacking. In this paper, we present the Odeuropa data model for olfactory heritage information. The model has been developed in collaboration with olfactory and art historians. Our model can express the various stages in a smell’s lifetime – creation, being experienced, deodorisation – and their relation to locations, times and the agents that interact with them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is relevant the inclusion of the perfumes of Grasse in the UNESCO list. Source: https://bit.ly/3opPRin. Last visited: 15/03/2022.
- 2.
Examples in Japan: https://bit.ly/3u4ySFD and in France: https://bit.ly/3rYpv7Q.
- 3.
- 4.
- 5.
- 6.
https://en.wikipedia.org/wiki/Fragrance_wheel Last visited: 07/12/2021.
- 7.
While some of these are clearly carriers (wind, bottle) and other smell sources (jasmine, sulphur), some specific elements can embody any of the two role depending on the context (smoke). For this reason, we decided to have a single vocabulary including all terms, reporting the preferred role when possible.
- 8.
In that case, there will not be a Smell Interaction, but a single Smell Emission having as source the union of the different ingredients.
References
Achichi, M., Lisena, P., Todorov, K., Troncy, R., Delahousse, J.: DOREMUS: a graph of linked musical works. In: Vrandečić, D., et al. (eds.) The Semantic Web – ISWC 2018. LNCS, vol. 11137, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_1
Almagor, U.: Odors and private language: observations on the phenomenology of scent. Hum. Stud. 13(3), 253–274 (1990). https://doi.org/10.1007/BF00142757
Antonini, A., et al.: Understanding the phenomenology of reading through modelling. Semant. Web 12, 191–217 (2021). https://doi.org/10.3233/SW-200396
Arn, H., Acree, T.: Flavornet: a database of aroma compounds based on odor potency in natural products. Dev. Food Sci. 40, 27–28 (1998)
Bembibre, C., Strlič, M.: Smell of heritage: a framework for the identification, analysis and archival of historic odours. Herit. Sci. 5(1), 2 (2017). https://doi.org/10.1186/s40494-016-0114-1
Bembibre Jacobo, C.: Smell of Heritage. Ph.D. Thesis, UCL (University College London) (2020)
de Boer, V., van Doornik, J., Buitinck, L., Marx, M., Veken, T., Ribbens, K.: Linking the kingdom: enriched access to a historiographical text. In: Proceedings of the Seventh International Conference on Knowledge Capture, pp. 17–24 (2013)
Brooks, J., et al. (eds.): STT21: Smell, Taste, and Temperature Interfaces workshop. Yokohama, Japan (2021). https://stt21.plopes.org/
Brud, W.: Words versus odours, how perfumers communicate. Perfum. Flavorist 11, 27–44 (1986)
Carriero, V.A., et al.: The landscape of ontology reuse approaches. In: Applications and Practices in Ontology Design, Extraction, and Reasoning, pp. 21–38. IOS Press (2020)
Carriero, V.A., et al.: ArCo: the Italian cultural heritage knowledge graph. In: Ghidini, C., et al. (eds.) The Semantic Web – ISWC 2019. LNCS, vol. 11779, pp. 36–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_3
Datta, S.K., Coughlin, T.: An IoT architecture enabling digital senses. In: 2016 IEEE 6th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), pp. 67–68. IEEE (2016)
Dijkshoorn, C., et al.: The Rijksmuseum collection as linked data. Semant. Web J. 9, 221–230 (2018)
Doerr, M.: The CIDOC conceptual reference module: an ontological approach to semantic interoperability of metadata. AI Mag. 24(3), 75 (2003)
Doerr, M., Kritsotaki, A., Rousakis, Y., Hiebel, G., Theodoridou, M.: Definition of the CRMsci an extension of CIDOC-CRM to support scientific observation. Forth-Institution of Computer Science (2015)
Dravnieks, A.: Atlas of Odor Character Profiles. American Society for Testing and Materials, Philadelphia (1985)
Ehrich, S., Verbeek, C., Zinnen, M., Marx, L., Bembibre, C., Leemans, I.: Nose first. Towards an olfactory gaze for digital art history. In: First International Workshop on Multisensory Data and Knowledge (MDK), Zaragoza, Spain (2021)
Graves, M., Constabaris, A., Brickley, D.: FOAF: connecting people on the semantic web. Cat. Classif. Q. 43(3–4), 191–202 (2007). https://doi.org/10.1300/J104v43n03_10
Guest, C., et al.: Feasibility of integrating canine olfaction with chemical and microbial profiling of urine to detect lethal prostate cancer. PLoS ONE 16(2), e0245530 (2021)
Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)
Hartig, O.: The RDF* and SPARQL* approach to annotate statements in RDF and to reconcile RDF and property graphs. In: W3C Workshop on Web Standardization for Graph Data, Berlin, Germany (2019)
Henshaw, V.: Urban Smellscapes: Understanding and Designing City Smell Environments. Routledge/Taylor & Francis Group, New York (2014)
Howes, D.: Introduction to sensory museology. Senses Soc. 9(3), 259–267 (2014). https://doi.org/10.2752/174589314X14023847039917
Howes, D.: Empire of The Senses: The Sensual Culture Reader. Routledge, London (2021)
Howes, D., Classen, C.: Ways of Sensing: Understanding the Senses in Society. Routledge, London (2013)
Isaac, A., Haslhofer, B.: Europeana linked open data - data.europeana.eu. Semant. Web J. 4, 291–297 (2013)
Jaubert, J.N., Tapiero, C., Dore, J.: The field of odors: toward a universal language for odor relationships. Perfum. Flavorist 20, 1 (1995)
Jenner, M.S.: Follow your nose? Smell, smelling, and their histories. Am. Hist. Rev. 116(2), 335–351 (2011)
Kettler, A.: The Smell of Slavery: Olfactory Racism and the Atlantic World. Cambridge University Press, Cambridge (2020)
Kiechle, M.A.: Smell Detectives: An Olfactory History of Nineteenth-century Urban America. University of Washington Press, Seattle (2017)
Koho, M., Ikkala, E., Leskinen, P., Tamper, M., Tuominen, J., Hyvönen, E.: WarSampo knowledge graph: Finland in the second world war as linked open data. Semant. Web J. 12, 265–278 (2021)
Krusemark, E.A., Novak, L.R., Gitelman, D.R., Li, W.: When the sense of smell meets emotion: anxiety-state-dependent olfactory processing and neural circuitry adaptation. J. Neurosci. 33(39), 15324–15332 (2013)
Le Guérer, A.: Parfum. Le), Des origines à nos jours. Odile Jacob (2005)
Lebo, T., et al.: PROV-O: the PROV ontology. Technical report, World Wide Web Consortium (2013)
Leon, A., Gaitán, M., Insa, I., Sebastián, J., Alba, E.: SILKNOW. designing a thesaurus about historical silk for small and medium-sized textile museums. In: Ortiz Calderón, P., Pinto Puerto, Verhagen, P., Prieto, A. (eds.) Science and Digital Technology for Cultural Heritage. CRC Press, London (2020). https://doi.org/10.1201/9780429345470-34
Licon, C.C., et al.: Chemical features mining provides new descriptive structure-odor relationships. PLoS Comput. Biol. 15(4), e1006945 (2019)
Lisena, P., et al.: Controlled vocabularies for music metadata. In: 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France (2018). http://ismir2018.ircam.fr/doc/pdfs/68_Paper.pdf
Lisena, P., Troncy, R.: Representing complex knowledge for exploration and recommendation: the case of classical music information. In: Cota, G., Daquino, M., Pozzato, G.L. (eds.) Applications and Practices in Ontology Design, Extraction, and Reasoning, Studies on the Semantic Web Series (SSWS), vol. 49, pp. 107–123. IOS Press (2020). https://doi.org/10.3233/SSW200038
Lisena, P., van Erp, M., Bembibre, C., Leemans, I.: Data mining and knowledge graphs as a backbone for advanced olfactory experiences. In: Brooks et al. [8] (2021). https://stt21.plopes.org/wp-content/uploads/2021/05/STT2021_Odeuropa.pdf
Mathis, S., et al.: Olfaction and anosmia: from ancient times to COVID-19. J. Neurol. Sci. 425, 117433 (2021). https://doi.org/10.1016/j.jns.2021.117433, https://www.sciencedirect.com/science/article/pii/S0022510X21001271
de Matos, P., et al.: ChEBI: a chemistry ontology and database. J. Cheminform. 2(1), 1 (2010). https://doi.org/10.1186/1758-2946-2-S1-P6
Meroño-Peñuela, A., et al.: The midi linked data cloud. In: International Semantic Web Conference, vol. 10588, pp. 156–164. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_16
Miles, A., Pérez-Agüera, J.R.: SKOS: simple knowledge organisation for the web. Cat. Classif. Q. 43(3–4), 69–83 (2007)
Naravane, T., Lange, M.: Ontological framework for representation of tractable flavor: food phenotype, sensation, perception. In: ICBO (2018)
Noy, N.F., Hafner, C.D.: The state of the art in ontology design: a survey and comparative review. AI Mag. 18, 53 (1997). https://doi.org/10.1609/aimag.v18i3.1306, https://ojs.aaai.org/index.php/aimagazine/article/view/1306
Pasin, M., Motta, E.: Ontological requirements for annotation and navigation of philosophical resources. Synthese 182, 235–267 (2009). https://doi.org/10.1007/s11229-009-9660-3
Perkins, C., McLean, K.: Smell walking and mapping, chap. 10. Manchester University Press, Manchester (2020). https://doi.org/10.7765/9781526152732.00017, https://www.manchesterhive.com/view/9781526152732/9781526152732.00017.xml
Philpott, C.M., Bennett, A., Murty, G.E.: A brief history of olfaction and olfactometry. J. Laryngol. Otol. 122(7), 657–662 (2008). https://doi.org/10.1017/S0022215107001314
Sanchez-Lengeling, B., Wei, J.N., Lee, B.K., Gerkin, R.C., Aspuru-Guzik, A., Wiltschko, A.B.: Machine learning for scent: learning generalizable perceptual representations of small molecules. arXiv preprint arXiv:1910.10685 (2019)
Schleider, T., et al.: The SILKNOW knowledge graph. Semant. Web 1–16 (2021)
Schouten, S., de Boer, V., Petram, L., van Erp, M.: The wind in our sails: developing a reusable and maintainable Dutch maritime history knowledge graph. In: Proceedings of the 11th on Knowledge Capture Conference, K-CAP 2021, pp. 97–104. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3460210.3493548
Sharma, A., Saha, B.K., Kumar, R., Varadwaj, P.K.: OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions. Nucleic Acids Res. (2021). https://doi.org/10.1093/nar/gkab763
Shaw, R., Troncy, R., Hardman, L.: LODE: linking open descriptions of events. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) The Semantic Web, ASWC 2009. LNCS, vol. 5926, pp. 153–167. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10871-6_11
Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)
Stamou, G., van Ossenbruggen, J., Pan, J.Z., Schreiber, G., Smith, J.R.: Multimedia annotations on the semantic web. IEEE Multimedia 13(1), 86–90 (2006)
van Suchtelen, A.: Fleeting Scents in Colour. Mauritshuis, Den Haag, the Netherlands (2021)
Suominen, O., et al.: Publishing SKOS vocabularies with Skosmos. Manuscript submitted for review (2015)
Torta, G., Ardissono, L., La Riccia, L., Savoca, A., Voghera, A.: Representing ecological network specifications with semantic web techniques. In: KEOD-International Conference on Knowledge Engineering and Ontology Development, vol. 2, pp. 86–97. SCITEPRESS-Science and Technology Publications, Lda. (2017)
Tullett, W.: Smell in Eighteenth-Century England: A Social Sense. Oxford University Press, Oxford (2019)
Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the Simple Event Model (SEM). J. Web Seman. 9(2), 128–136 (2011)
Van Harreveld, A.P., Heeres, P., Harssema, H.: A review of 20 years of standardization of odor concentration measurement by dynamic olfactometry in Europe. J. Air Waste Manag. Assoc. 49(6), 705–715 (1999)
Verbeek, C., van Campen, C.: Inhaling memories. Senses Soc. 8(2), 133–148 (2013). https://doi.org/10.2752/174589313X13589681980696
Wu, D., Luo, D., Wong, K.Y., Hung, K.: POP-CNN: predicting odor pleasantness with convolutional neural network. IEEE Sens. J. 19(23), 11337–11345 (2019)
Acknowledgements
This work has been partially supported by European Union’s Horizon 2020 research and innovation programme within the Odeuropa project (grant agreement No. 101004469). Smells that helped get this paper out: citrus (to boost our energy levels), rosemary (to keep us alert) and the smell of hell (to keep us on our toes).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lisena, P. et al. (2022). Capturing the Semantics of Smell: The Odeuropa Data Model for Olfactory Heritage Information. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-06981-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06980-2
Online ISBN: 978-3-031-06981-9
eBook Packages: Computer ScienceComputer Science (R0)