Abstract
Stream Reasoning is a well established field not only in the Semantic Web, but is also adapted in the knowledge representation and reasoning and AI community in general. In the Semantic Web area, there have been valuable efforts in building data generators and benchmarks, however they are not well suited for evaluating more expressive stream reasoning approaches, since the focus is on a graph-based data model and more limited reasoning features, such as query answering. This paper aims at filling the gap, so the different communities can compare, discuss, and benchmark the various approaches for stream reasoning based on a common playground. We will present the stream reasoning playground that targets streaming reasoning as the first-class modelling and processing feature. Our playground includes an easy-to-extend platform for data stream generation with pluggable data formatters, whereby different data stream sources, and modelling problems for two interesting application scenarios, i.e., intelligent traffic management and vehicle stream data analytics, are provided. Furthermore, we present a more generic scenario for time-series data, where a workflow for streaming time-series data from various datasets is facilitated by using mapping functions. To illustrate a first application of the playground, we report on the usage experience of well-known stream reasoner developers in the “model and solve” Hackathon event of the annual Stream Reasoning workshop.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
A full list of attributes is given in https://github.com/patrik999/stream-reasoning-challenge/blob/master/hackathon-2021/Hackaton_Overview.pdf.
- 5.
Additionally to the standard namespaces rdf, rdfs, and xsd, we have
,
,
.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
The questions and results are provided in https://github.com/patrik999/stream-reasoning-challenge/blob/master/hackathon-2021/Survey.pdf.
References
Alevizos, E., Artikis, A., Paliouras, G.: Wayeb: a tool for complex event forecasting. CoRR abs/1901.01826 arXiv:1901.01826 (2019)
Ali, M.I., Gao, F., Mileo, A.: Citybench: a configurable benchmark to evaluate RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) The Semantic Web - ISWC 2015. Lecture Notes in Computer Science, vol. 9367, pp. 374–389. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_25
Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 635–644. ACM (2011). https://doi.org/10.1145/1963405.1963495
Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL: SPARQL for continuous querying. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1061–1062 (2009)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Calimeri, F., Ianni, G., Pacenza, F., Perri, S., Zangari, J.: Incremental answer set programming with overgrounding. Theory Pract. Log. Program. 19(5–6), 957–973 (2019). https://doi.org/10.1017/S1471068419000292
Calimeri, F., Manna, M., Mastria, E., Morelli, M.C., Perri, S., Zangari, J.: I-DLV-sr: a stream reasoning system based on I-DLV. Theory Pract. Log. Program. 21(5), 610–628 (2021). https://doi.org/10.1017/S147106842100034X
Dell’Aglio, D., Dao-Tran, M., Calbimonte, J., Phuoc, D.L., Valle, E.D.: A query model to capture event pattern matching in RDF stream processing query languages. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) Knowledge Engineering and Knowledge Management, vol. 10024, pp. 145–162 (2016). https://doi.org/10.1007/978-3-319-49004-5_10
Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook: a summary of ten years of research and a vision for the next decade. Data Sci. 1(1–2), 59–83 (2017). https://doi.org/10.3233/DS-170006
Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the 7th Workshop on Linked Data on the Web, April 2014
Eiter, T., Falkner, A.A., Schneider, P., Schüller, P.: ASP-based signal plan adjustments for traffic flow optimization. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Conference on Artificial Intelligence, Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 3026–3033. IOS Press (2020)
Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web 10(1), 9–32 (2019). https://doi.org/10.3233/SW-180320
Janowicz, K., Haller, A., Cox, S.J., Le Phuoc, D., LefrançSois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (2019). https://doi.org/10.1016/j.websem.2018.06.003
Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: A driving context ontology for making sense of cross-domain driving data (2018). https://www.researchgate.net/publication/331991645_A_driving_context_ontology_for_making_sense_of_cross-domain_driving_data
Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and abstract syntax. W3C Recommendation (2004). http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked stream data processing engines: facts and figures. In: Cudré-Mauroux, P., et al. (eds.) The Semantic Web – ISWC 2012. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35173-0_20
Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.) The Semantic Web – ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_24
Le-Tuan, A., Kien-Tran, T., Nguyen-Duc, M., Yuan, J., Hauswirth, M., Yuan, J.: VisionKG: towards a unified vision knowledge graph. In: Proceedings of the ISWC 2021 Posters and Demonstrations Track. CEUR Workshop Proceedings (2021)
Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: reasoning over dynamic data. J. Web Seman. 25, 24–44 (2014). https://doi.org/10.1016/j.websem.2014.02.001
Mauri, A., et al.: TripleWave: spreading RDF streams on the web. In: Groth, P., et al. (eds.) The Semantic Web – ISWC 2016. LNCS, vol. 9982, pp. 140–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_15
Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) The Semantic Web - ISWC 2015. Lecture Notes in Computer Science, vol. 9367, pp. 3–20. Springer (2015). https://doi.org/10.1007/978-3-319-25010-6_1
Phuoc, D.L., Eiter, T., Lê Tuán, A.: A scalable reasoning and learning approach for neural-symbolic stream fusion. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, pp. 4996–5005. AAAI Press (2021). https://ojs.aaai.org/index.php/AAAI/article/view/16633
Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation, January 2008. http://www.w3.org/TR/rdf-sparql-query/
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)
Schafer, H., Santana, E., Haden, A., Biasini, R.: A commute in data: the comma2k19 dataset. arXiv:1812.05752 (2018)
Shi, F., Li, Q., Zhu, T., Ning, H.: A survey of data semantization in Internet of Things. Sensors 18(2), 313 (2018). https://doi.org/10.3390/s18010313
Suchan, J., Bhatt, M., Varadarajan, S.: Commonsense visual sensemaking for autonomous driving - on generalised neurosymbolic online abduction integrating vision and semantics. Artif. Intell. 299, 103522 (2021). https://doi.org/10.1016/j.artint.2021.103522
Tommasini, R., Bonte, P., Ongenae, F., Della Valle, E.: RSP4J: an API for RDF stream processing. In: Verborgh, R., et al. (eds.) The Semantic Web, ESWC 2021. LNCS, vol. 12731, pp. 565–581. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_34
Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: RSPLab: RDF stream processing benchmarking made easy. In: d’Amato, C., et al. (eds.) The Semantic Web – ISWC 2017. LNCS, vol. 10588, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_21
Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4
Wilms, D., Alvarez-Coello, D., Bekan, A.: An evolving ontology for vehicle signals. In: 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), pp. 1–5. IEEE, Helsinki (2021). https://ieeexplore.ieee.org/document/9448884/, https://doi.org/10.1109/VTC2021-Spring51267.2021.9448884
Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) The Semantic Web – ISWC 2012. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_40
Acknowledgements
This work was funded by the German Research Foundation under grant nr. 453130567 (COSMO), the German Ministry for Education and Research BIFOLD grant nr. 01IS18025A and 01IS18037A, the German Academic Exchange Service grant nr. 57440921, and the EU Horizon 2020 Research and Innovation program under grant nr. 779852 (IoTCrawler).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schneider, P., Alvarez-Coello, D., Le-Tuan, A., Nguyen-Duc, M., Le-Phuoc, D. (2022). Stream Reasoning Playground. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-06981-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06980-2
Online ISBN: 978-3-031-06981-9
eBook Packages: Computer ScienceComputer Science (R0)