Abstract
In an automated Chest X-Ray (CXR) screening process, foreign objects such as coins, buttons, medical tubes, and devices and jewelry can adversely influence the performance of abnormality screening tools. As machine learning algorithms did not separately consider them into account, they result in false-positive cases. In our work, we employ You Only Look Once (YOLOv4) algorithm - a Deep Neural Network - to detect foreign objects in CXR images. Considering its genericity, on a dataset of 400 publicly available CXR images hosted by LHNCBC, U.S National Library of Medicine (NLM), National Institutes of Health (NIH), we achieve the following performance scores: accuracy of 91.00%, precision of 85.00%, recall of 93.00% and f1-score of 89.00%. Unlike state-of-art works, where they are limited to specific type of foreign object (e.g., circle-like objects), this is the first time we report experimental results on all possible types of foreign object.
Authors Credit Statement. The first two authors contributed equally to the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Raoof, S., Feigin, D., Sung, A., Raoof, S., Irugulpati, L., Rosenow, E.C., III.: Interpretation of plain chest roentgenogram. Chest 141(2), 545–558 (2012)
Zohora, F.T., Santosh, K.C.: Circular foreign object detection in chest X-ray images. In: Santosh, K.C., Hangarge, M., Bevilacqua, V., Negi, A. (eds.) RTIP2R 2016. CCIS, vol. 709, pp. 391–401. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4859-3_35
Santosh, K.C., Vajda, S., Antani, S., Thoma, G.R.: Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int. J. Comput. Assisted Radiol. Surg. 11(9), 1637–1646 (2016)
Ding, M., et al.: Local-global classifier fusion for screening chest radiographs. In: Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications, vol. 10138, p. 101380A. International Society for Optics and Photonics (2017)
Mahbub, Md.K., Biswas, M., Gaur, L., Alenezi, F., Santosh, K.C.: Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis. Inf. Sci. 592, 389–401 (2022)
Sakai, S., et al.: Computer-aided nodule detection on digital chest radiography: validation test on consecutive T1 cases of resectable lung cancer. J. Digit. Imaging 19(4), 376–382 (2006)
Simkó, G., Orbán, G., Máday, P., Horváth, G.: Elimination of clavicle shadows to help automatic lung nodule detection on chest radiographs. In: Vander Sloten, J., Verdonck, P., Nyssen, M., Haueisen, J. (eds.) 4th European Conference of the International Federation for Medical and Biological Engineering, pp. 488–491. Springer, Cham (2009). https://doi.org/10.1007/978-3-540-89208-3_116
Freedman, M.T., Lo, S.-C.B., Seibel, J.C., Bromley, C.M.: Lung nodules: improved detection with software that suppresses the rib and clavicle on chest radiographs. Radiology 260(1), 265–273 (2011)
Santosh, K.C.: AI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal data. J. Med. Syst. 44(5), 93 (2020)
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Thompson, M.J., Kubicka, R.A., Smith, C.: Evaluation of cardiopulmonary devices on chest radiographs: digital vs analog radiographs. Am. J. Roentgenol. 153(6), 1165–1168 (1989)
Godoy, M.C.B., Leitman, B.S., De Groot, P.M., Vlahos, I., Naidich, D.P.: Chest radiography in the ICU: Part 2, evaluation of cardiovascular lines and other devices. Am. J. Roentgenol. 198(3), 572–581 (2012)
Godoy, M.C.B., Leitman, B.S., de Groot, P.M., Vlahos, I., Naidich, D.P.: Chest radiography in the ICU: Part 1, evaluation of airway, enteric, and pleural tubes. Am. J. Roentgenol. 198(3), 563–571 (2012)
Jennings, P., Padley, S.P.G., Hansell, D.M.: Portable chest radiography in intensive care: a comparison of computed and conventional radiography. Br. J. Radiol. 65(778), 852–856 (1992)
Murthy, P.S.N., Ingle, V.S., George, E., Ramakrishna, S., Shah, F.A.: Sharp foreign bodies in the tracheobronchial tree. Am. J. Otolaryngol. 22(2), 154–156 (2001)
Pugmire, B.S., Lin, T.K., Pentiuk, S., de Alarcon, A., Hart, C.K., Trout, A.T.: Imaging button battery ingestions and insertions in children: a 15-year single-center review. Pediatr. Radiol. 47(2), 178–185 (2016). https://doi.org/10.1007/s00247-016-3751-3
Xue, Z., et al.: Foreign object detection in chest X-rays. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 956–961. IEEE (2015)
Zohora, F.T., Antani, S., Santosh, K.C.: Circle-like foreign element detection in chest X-rays using normalized cross-correlation and unsupervised clustering. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105741V. International Society for Optics and Photonics (2018)
Santosh, K.C., Dhar, M.K., Rajbhandari, R., Neupane, A.: Deep neural network for foreign object detection in chest X-rays. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 538–541. IEEE (2020)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Girshick, R.B.: Fast R-CNN. CORR, abs/1504.08083 (2015)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)
Huixuan, F., Song, G., Wang, Y.: Improved YOLOv4 marine target detection combined with CBAM. Symmetry 13(4), 623 (2021)
Wang, C.-Y., et al.: CSPNet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Santosh, K., Roy, S., Allu, S. (2022). Generic Foreign Object Detection in Chest X-rays. In: Santosh, K., Hegadi, R., Pal, U. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2021. Communications in Computer and Information Science, vol 1576. Springer, Cham. https://doi.org/10.1007/978-3-031-07005-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-07005-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07004-4
Online ISBN: 978-3-031-07005-1
eBook Packages: Computer ScienceComputer Science (R0)