Skip to main content

A Super Feature Transform for Small-Size Image Forgery Detection

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2021)

Abstract

In this digital era, we have a wide variety of image editing software that is prone to create malicious alterations on images. Hence, the evaluation for authenticity of image contents and identification of malicious modifications is an open problem. In this work, an efficient small-size image forgery detection algorithm is presented based on Super Feature Transform - combining Super Resolution and Feature Transform. The approach enhances detection of small-size forgery by pre-processing the input image using super resolution algorithm. A robust feature transform is suggested to extract potential feature points from small-size patches with entanglement properties. Subsequently, feature matching and filtering is achieved by fuzzy threshold so that the false matches are filtered out. Also, the feature matching module employs a soft clustering to determine the matching points between identical and semi-identical feature points in different clusters. The experimental evaluations demonstrated that the proposed method outperforms existing techniques particularly when the forgery size is small and detects manifold duplicate forged regions in terms of TPR and FPR recognition rate.

Supported by DST-PURSE Phase II, Govt of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., Liu, G., Zhang, Z., Dai, Y., Wang, Z.: Fast and robust forensics for image region-duplication forgery. Acta Autom. Sin. 35(12), 1488–1495 (2009)

    Article  Google Scholar 

  2. Ryu, S.-J., Lee, M.-J., Lee, H.-K.: Detection of copy-rotate-move forgery using Zernike moments. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) Information Hiding, IH 2010. LNCS, vol. 6387, pp. 51–65. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_5

  3. Fridrich, A.J., Soukal, B.D., Lukas, A.J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop, Cleveland, Ohio (2003)

    Google Scholar 

  4. Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images using SIFT algorithm. In: IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA), vol. 2, pp. 272–276 (2008)

    Google Scholar 

  5. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.A.: Sift-based forensic method for copy move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)

    Article  Google Scholar 

  6. Ansari, M.D., Ghrera, S.P., Tyagi, V.: Pixel-based image forgery detection: a review. IETE J. Educ. 55, 40–46 (2014)

    Article  Google Scholar 

  7. Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)

    Article  Google Scholar 

  8. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  9. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision – ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

  10. Kumar, S., Desai, J.V., Mukherjee, S.A.: Fast keypoint based hybrid method for copy-move forgery detection. Int. J. Comput. Digit. Syst. 4(2), 91–99 (2015)

    Article  Google Scholar 

  11. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the 2016 IEEE Conference on Computer Vision Pattern Recognition, Las Vegas, NV, USA, pp. 1637–1645 (2016)

    Google Scholar 

  12. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2017)

    Google Scholar 

  13. Dong, C., Loy, C.C., He, K.M., Tang, X.O.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–303 (2016)

    Article  Google Scholar 

  14. Chen, L., Lu, W., Ni, J., Sun, W., Huang, J.: Region duplication detection based on Harris corner points and step sector statistics. J. Vis. Commun. Image Represent. 24(3), 244–254 (2013)

    Article  Google Scholar 

  15. Pun, C.M., Yuan, X.C., Bi, X.L.: Image forgery detection using adaptive oversegmentation and feature point matching. IEEE Trans. Inf. Forensics Secur. 10(8), 1705–1716 (2015)

    Article  Google Scholar 

  16. Al Azrak, F.M., Elsharkawy, Z.F., Elkorany, A.S., El Banby, G.M., Dessowky, M.I., Abd El-Samie, F.E.: Copy-move forgery detection based on discrete and SURF transforms. Wirel. Pers. Commun. 110(1), 503–530 (2019). https://doi.org/10.1007/s11277-019-06739-7

    Article  Google Scholar 

  17. Al-Qershi, O.M., Khoo, B.E.: Enhanced block-based copy-move forgery detection using k-means clustering. Multidimension. Syst. Signal Process. 30(4), 1671–1695 (2019)

    Article  Google Scholar 

  18. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensic Secur. 7(6), 1841–1854 (2012)

    Article  Google Scholar 

  19. Derrode, S., Ghorbel, F.: Robust and efficient Fourier-Mellin transform approximations for gray-level image reconstruction and complete invariant description. Comput. Vis. Image Underst. 83(1), 57–78 (2001)

    Article  Google Scholar 

  20. Wolberg, G., Zokai, S.: Robust image registration using log-polar transform. In: Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101), pp. 493–496 (2000)

    Google Scholar 

  21. Yang, M.S., Nataliani, Y.: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters. Pattern Recogn. 71, 45–59 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support extended by DST-PURSE Phase II, Govt of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Greeshma or V. R. Bindu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Greeshma, M.S., Bindu, V.R. (2022). A Super Feature Transform for Small-Size Image Forgery Detection. In: Santosh, K., Hegadi, R., Pal, U. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2021. Communications in Computer and Information Science, vol 1576. Springer, Cham. https://doi.org/10.1007/978-3-031-07005-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07005-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07004-4

  • Online ISBN: 978-3-031-07005-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics