Skip to main content

Imagined Object Recognition Using EEG-Based Neurological Brain Signals

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1576))

Abstract

Researchers have been using Electroencephalography (EEG) to build Brain-Computer Interfaces (BCIs) systems. They have had a lot of success modeling brain signals for applications, including emotion detection, user identification, authentication, and control. The goal of this study is to employ EEG-based neurological brain signals to recognize imagined objects. The user imagines the object after looking at the same on the monitor screen. The EEG signal is recorded when the user thinks up about the object. These EEG signals were processed using signal processing methods, and machine learning algorithms were trained to classify the EEG signals. The study involves coarse and fine level EEG signal classification. The coarse-level classification categorizes the signals into three classes (Char, Digit, Object), whereas the fine-level classification categorizes the EEG signals into 30 classes. The recognition rates of 97.30%, and 93.64% were recorded at coarse and fine level classification, respectively. Experiments indicate the proposed work outperforms the previous methods.

All authors contributes equal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Figure 6 in https://link.springer.com/content/pdf/10.1007/s00779-017-1083-4.pdf.

  2. 2.

    http://parimal.iitr.ac.in/dataset.

References

  1. Al-Qazzaz, N.K., Hamid Bin Mohd Ali, S., Ahmad, S.A., Islam, M.S., Escudero, J.: Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task. Sensors 15(11), 29015–29035 (2015). https://doi.org/10.3390/s151129015

  2. Amin, H.U., Mumtaz, W., Subhani, A., Mohamad Saad, M.N., Malik, A.: Classification of EEG signals based on pattern recognition approach. Front. Comput. Neurosci. 11, 103 (2017). https://doi.org/10.3389/fncom.2017.00103

    Article  Google Scholar 

  3. Ang, K.K., Guan, C.: EEG-based strategies to detect motor imagery for control and rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 25(4), 392–401 (2016)

    Article  Google Scholar 

  4. Bang, J., Jeong, J.H., Won, D.O.: Classification of visual perception and imagery based EEG signals using convolutional neural networks. In: 2021 9th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–6 (2021)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Carrión-Ojeda, D., Fonseca-Delgado, R., Pineda, I.: Analysis of factors that influence the performance of biometric systems based on EEG signals. Expert Syst. Appl. 165, 113967 (2021). https://doi.org/10.1016/j.eswa.2020.113967

    Article  Google Scholar 

  7. Costa, F.R.L., Iáñez, E., Azorín, J., Patow, G.: Classify four imagined objects with EEG signals. Evol. Intel. 1–10 (2021). https://doi.org/10.1007/s12065-021-00577-y

  8. Crasto, N., Upadhyay, R.: Wavelet decomposition based automatic sleep stage classification using EEG. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017. LNCS, vol. 10208, pp. 508–516. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56148-6_45

    Chapter  Google Scholar 

  9. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  10. Emotiv: EEG emotiv epoc+, https://www.emotiv.com/epoc/. Accessed 9 Feb 2020

  11. Heckert, N., et al.: Handbook 151: Nist/sematech e-handbook of statistical methods (2002)

    Google Scholar 

  12. Kong, W., Song, X., Sun, J.: Emotion recognition based on sparse representation of phase synchronization features. Multimed. Tools. Appl. 80(14), 21203–21217 (2021)

    Article  Google Scholar 

  13. Kumar, P., Saini, R., Roy, P.P., Sahu, P.K., Dogra, D.P.: Envisioned speech recognition using EEG sensors. Pers. Ubiquit. Comput. 22(1), 185–199 (2018)

    Article  Google Scholar 

  14. Lee, S.H., Lee, M., Jeong, J.H., Lee, S.W.: Towards an EEG-based intuitive BCI communication system using imagined speech and visual imagery. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 4409–4414 (2019)

    Google Scholar 

  15. Lee, S.H., Lee, M., Lee, S.W.: Neural decoding of imagined speech and visual imagery as intuitive paradigms for BCI communication. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 2647–2659 (2020)

    Article  Google Scholar 

  16. Lu, Y., Bi, L.: Eeg signals-based longitudinal control system for a brain-controlled vehicle. IEEE Trans. Neural Syst. Rehabil. Eng. 27(2), 323–332 (2018)

    Article  Google Scholar 

  17. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  18. Maheshwari, D., Ghosh, S., Tripathy, R., Sharma, M., Acharya, U.R.: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals. Comput. Biol. Med. 134, 104428 (2021). https://doi.org/10.1016/j.compbiomed.2021.104428

    Article  Google Scholar 

  19. Min, B., Kim, J., Park, H., Lee, B.: Vowel imagery decoding toward silent speech BCI using extreme learning machine with electroencephalogram. BioMed Research International (2016)

    Google Scholar 

  20. Mishra, S., Birok, R.: Literature review: sleep stage classification based on EEG signals using artificial intelligence technique. Recent Trends in Communication and Electronics, pp. 241–244 (2021)

    Google Scholar 

  21. Panachakel, J.T., Ramakrishnan, A.G.: Decoding covert speech from EEG-a comprehensive review. Front. Neurosci. 15, 392 (2021)

    Article  Google Scholar 

  22. Products, B.: actiCHamp Plus. https://www.brainproducts.com/productdetails.php?id=74. Accessed 9 Feb 2020

  23. Rajagopal, D., Hemanth, S., Yashaswini, N., Sachin, M., Suryakanth, M.: Detection of Alzheimer’s disease using BCI. Int. J. Progressive Res. Sci. Eng. 1(4), 184–190 (2020)

    Google Scholar 

  24. Rajinikanth, V., Joseph Raj, A.N., Thanaraj, K.P., Naik, G.R.: A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Appl. Sci. 10(10), 3429 (2020)

    Article  Google Scholar 

  25. Saha, P., Fels, S.: Hierarchical deep feature learning for decoding imagined speech from EEG. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 10019–10020 (2019)

    Google Scholar 

  26. Saini, R., et al.: Don’t just sign use brain too: a novel multimodal approach for user identification and verification. Inf. Sci. 430, 163–178 (2018)

    Article  Google Scholar 

  27. Santaji, S., Santaji, S., Desai, V.: Automatic sleep stage classification with reduced epoch of EEG. Evolutionary Intelligence, pp. 1–8 (2021)

    Google Scholar 

  28. Simpraga, S., et al.: EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  29. Vecchio, F., et al.: Classification of Alzheimer’s disease with respect to physiological aging with innovative EEG biomarkers in a machine learning implementation. J. Alzheimers Dis. 75(4), 1253–1261 (2020)

    Article  Google Scholar 

  30. Vidaurre, C., Klauer, C., Schauer, T., Ramos-Murguialday, A., Müller, K.R.: EEG-based BCI for the linear control of an upper-limb neuroprosthesis. Med. Eng. Phys. 38(11), 1195–1204 (2016)

    Article  Google Scholar 

  31. Yang, S., Deravi, F.: On the usability of electroencephalographic signals for biometric recognition: a survey. IEEE Trans. Hum.-Mach. Syst. 47(6), 958–969 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saini, R. et al. (2022). Imagined Object Recognition Using EEG-Based Neurological Brain Signals. In: Santosh, K., Hegadi, R., Pal, U. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2021. Communications in Computer and Information Science, vol 1576. Springer, Cham. https://doi.org/10.1007/978-3-031-07005-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07005-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07004-4

  • Online ISBN: 978-3-031-07005-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics