Skip to main content

CheXNet for the Evidence of Covid-19 Using 2.3K Positive Chest X-rays

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2021)

Abstract

CheXNet is not a surprise for Deep Learning (DL) community as it was primarily designed for radiologist-level pneumonia detection in Chest X-rays (CXRs). In this paper, we study CheXNet to analyze CXRs to detect the evidence of Covid-19. On a dataset of size 4, 600 CXRs (2, 300 Covid-19 positive cases and 2, 300 non-Covid cases (Healthy and Pneumonia cases)) and with k(=5) fold cross-validation technique, we achieve the following performance scores: accuracy of 0.98, AUC of 0.99, specificity of 0.98 and sensitivity of 0.99. On such a large dataset, our results can be compared with state-of-the-art results.

Authors Credit Statement. Authors contributed equally to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/agchung/Figure1-COVID-chestxray-dataset.

  2. 2.

    https://github.com/agchung/Actualmed-COVID-chestxray-dataset.

  3. 3.

    https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.

References

  1. World health organization (2020) naming the coronavirus disease (Covid-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-%28covid-2019%29-and-the-virus-that-causes-it

  2. Hui, D.S., et al.: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91, 264–266 (2020)

    Article  Google Scholar 

  3. World health organization (2020) coronavirus disease (Covid-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

  4. Santosh, K.C.: COVID-19 prediction models and unexploited data. J. Med. Syst. 44(9), 170 (2020)

    Article  Google Scholar 

  5. Li, M., et al.: Coronavirus disease (Covid-19): spectrum of CT findings and temporal progression of the disease. Acad. Radiol. 27(5), 603–608 (2020)

    Article  Google Scholar 

  6. Kong, W., Agarwal, P.P.: Chest imaging appearance of Covid-19 infection. Radiol.: Cardiothorac. Imaging 2(1), e200028 (2020)

    Google Scholar 

  7. Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020)

    Article  Google Scholar 

  8. Ng, M.-Y., et al.: Imaging profile of the Covid-19 infection: radiologic findings and literature review. Radiol.: Cardiothorac. Imaging 2(1), e200034 (2020)

    Google Scholar 

  9. Santosh, K.C., Ghosh, S.: Covid-19 imaging tools: how big data is big? J. Med. Syst. 45(7), 1–8 (2021)

    Article  Google Scholar 

  10. Santosh, K.C.: AI-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/multimodal data. J. Med. Syst. 44(5), 1–5 (2020)

    Article  Google Scholar 

  11. Santosh, K.C., Vajda, S., Antani, S., Thoma, G.R.: Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1637–1646 (2016)

    Article  Google Scholar 

  12. Karargyris, A., et al.: Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int. J. Comput. Assist. Radiol. Surg. 11(1), 99–106 (2016)

    Article  Google Scholar 

  13. Vajda, S., et al.: Feature selection for automatic tuberculosis screening in frontal chest radiographs. J. Med. Syst. 42(8), 1–11 (2018)

    Article  Google Scholar 

  14. Santosh, K.C., Antani, S.: Automated chest X-ray screening: can lung region symmetry help detect pulmonary abnormalities? IEEE Trans. Med. Imaging 37(5), 1168–1177 (2017)

    Article  Google Scholar 

  15. Kang, M., Gurbani, S.S., Kempker, J.A.: The published scientific literature on Covid-19: an analysis of pubmed abstracts. J. Med. Syst. 45(1), 1–2 (2021)

    Article  Google Scholar 

  16. Wang, L., Lin, Z.Q., Wong, A.: Covid-net: a tailored deep convolutional neural network design for detection of Covid-19 cases from chest X-ray images. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  17. Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (Covid-19) using X-ray images and deep convolutional neural networks. Pattern Anal. Appl. 24, 1–14 (2021)

    Article  Google Scholar 

  18. Marques, G., Agarwal, D., de la Torre Díez, I.: Automated medical diagnosis of Covid-19 through efficientnet convolutional neural network. Appl. Soft Comput. 96, 106691 (2020)

    Google Scholar 

  19. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43(2), 635–640 (2020)

    Article  Google Scholar 

  20. Mukherjee, H., Ghosh, S., Dhar, A., Obaidullah, S.M., Santosh, K.C., Roy, K.: Deep neural network to detect Covid-19: one architecture for both CT scans and chest X-rays. Appl. Intell. 51, 1–13 (2020)

    Google Scholar 

  21. Das, D., Santosh, K.C., Pal, U.: Truncated inception net: Covid-19 outbreak screening using chest X-rays. Phys. Eng. Sci. Med. 43(3), 915–925 (2020)

    Article  Google Scholar 

  22. Loey, M., Manogaran, G., Khalifa, N.E.M.: A deep transfer learning model with classical data augmentation and CGAN to detect Covid-19 from chest CT radiography digital images. Neural Comput. Appl. 1–13 (2020)

    Google Scholar 

  23. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of Covid-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 103792 (2020)

    Google Scholar 

  24. Kermany, D., Zhang, K., Goldbaum, M., et al.: Labeled optical coherence tomography (OCT) and chest X-ray images for classification. Mendeley Data 2(2) (2018)

    Google Scholar 

  25. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  26. Rajpurkar, P., et al.: ChexNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  27. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  28. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  29. Mahbub, M.K., Biswas, M., Gaur, L., Alenezi, F., Santosh, K.C.: Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis. Inf. Sci. 592, 389–401 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to KC Santosh or Supriti Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santosh, K., Ghosh, S. (2022). CheXNet for the Evidence of Covid-19 Using 2.3K Positive Chest X-rays. In: Santosh, K., Hegadi, R., Pal, U. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2021. Communications in Computer and Information Science, vol 1576. Springer, Cham. https://doi.org/10.1007/978-3-031-07005-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07005-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07004-4

  • Online ISBN: 978-3-031-07005-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics