Skip to main content

Some Mathematical and Computational Relations Between Timbre and Color

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2022)

Abstract

In physics, timbre is a complex phenomenon, like color. Musical timbres are given by the superposition of sinusoidal signals, corresponding to longitudinal acoustic waves. Colors are produced by the superposition of transverse electromagnetic waves in the domain of visible light. Regarding human perception, specific timbre variations provoke effects similar to color variations, for example, a rising tension or a relaxation effect. We aim to create a computational framework to modulate timbres and colors. To this end, we consider categorical groupoids, where colors (timbres) are objects and color variations (timbre variations) are morphisms, and functors between them, which are induced by continuous maps. We also sketch some gestural variations of this scheme. Thus, we try to soften the differences and focus on the similarity of structures.

J.S. Arias-Valero—Independent researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Loudness in music performance can affect timbre characteristics [6].

  2. 2.

    A first experiment, where participants were asked to associate colors, color bands, and timbres, confirmed a non-negligible perceptive correlation [26].

  3. 3.

    We mix colors in printing and painting with the subtractive model, a sort of dual of the additive one.

  4. 4.

    We do not have a proof of this continuity.

  5. 5.

    The wave is periodic if the quotient between carrier and modulator frequencies is a rational number.

  6. 6.

    This relation is not a proper morphism but it can be achieved by pasting two suitable 2-simplices in \(\text {Sing}(X)\), which is a higher gesture according to [2]. It is also a hypergesture in the sense of [31].

  7. 7.

    This defines a continuous map \([0,20]\times \mathbb {R}\longrightarrow \mathbb {R}\), so the exponential transpose \([0,20]\longrightarrow \mathbb {R}^\mathbb {R}\), which is a path, is continuous.

  8. 8.

    The audio file, in which we identify the increasing modulation index with time (in seconds), can be accessed from the link https://soundcloud.com/maria-mannone/fm-path/s-cFJ7kNrqJjs?.

  9. 9.

    In essence, it is continuous because each component (composition with f for arrows and f for vertices) is.

References

  1. Arias, J.S.: Spaces of gestures are function spaces. J. Math. Music 12, 89–105 (2018). https://doi.org/10.1080/17459737.2018.1496489

    Article  Google Scholar 

  2. Arias-Valero, J.S., Lluis-Puebla, E.: Simplicial Sets and Gestures: Mathematical Music Theory, Infinity-Categories, Homotopy, and Homology. Under review (2020)

    Google Scholar 

  3. Bénabou, J.: Introduction to bicategories, part I. In: Bénabou, J. (ed.) Reports of the Midwest Category Seminar. Lecture Notes in Mathematics, vol. 47, pp. 1–77. Springer, Heidelberg (1967). https://doi.org/10.1007/BFb0074299

    Chapter  Google Scholar 

  4. Benson, D.: Music: a mathematical offering (2008). https://homepages.abdn.ac.uk/d.j.benson/pages/html/music.pdf

  5. Caivano, J.: Color and sound: physical and psychophysical relations. Color. Res. Appl. 19, 126–133 (1994)

    Google Scholar 

  6. Castellengo, M.: Écoute Musicale et Acoustique. Eyrolles, Paris (2015)

    Google Scholar 

  7. Clark, T.: On the topological characterization of gestures in a convenient category of spaces. J. Math. Music 15(1), 37–61 (2020)

    Article  Google Scholar 

  8. Crnjanski, N., Tomaš, D.: Musical perception and visualization. In: Paper Read at Music and Spatiality. 13th Biennale International Conference on Music Theory and Analysis (2019)

    Google Scholar 

  9. da Vinci, L.: Trattato della pittura. Unione cooperativa editrice, reprint (1890). https://archive.org/details/trattatodellapit00leon_0

  10. Fairman, H.S., Brill, M.H., Hemmendinger, H.: How the CIE 1931 color-matching functions were derived from wright-guild data. Color. Res. Appl. 22(11), 11–23 (1997)

    Article  Google Scholar 

  11. Goethe, J.W.V.: Theory of Colours (Zur Farbenlehre). Cotta’schen Buchhandlung (1810)

    Google Scholar 

  12. Grandis, M.: Higher fundamental groupoids for spaces. Topol. Appl. 129(3), 281–299 (2003). https://www.sciencedirect.com/science/article/pii/S0166864102001852

  13. Grey, J.: Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc. Am. 61, 1270–1277 (1877)

    Article  Google Scholar 

  14. Groth, M.: A short course on \(\infty \)-categories. In: Handbook of Homotopy Theory, chapter 14. Chapman and Hall (2020). https://people.math.rochester.edu/faculty/doug/otherpapers/groth_scinfinity.pdf

  15. Hardie, K.A., Kamps, K.H., Kieboom, R.W.: A homotopy bigroupoid of a topological space. Appl. Categ. Struct. 9, 311–327 (2001)

    Article  Google Scholar 

  16. Helmholtz, H.v.: On the Sensations of Tone as a Physiological Basis for the Theory of Music (English translation). Longmans, Green (1895). https://archive.org/details/onsensationston02helmgoog

  17. Hughes, J.R.: Generalizing the orbifold model for voice leading. Mathematics 10(6), 939 (2022). https://www.mdpi.com/2227-7390/10/6/939

  18. Itoh, K., Sakata, H., Kwee, I., Nakada, T.: Musical pitch classes have rainbow hues in pitch class-color synesthesia. Nat. Sci. Rep. 7, 17781 (2017) https://www.nature.com/articles/s41598-017-18150-y

  19. Jedrzejewski, F.: Hétérotopies Musicales. Hermann, Paris (2019)

    Google Scholar 

  20. Kandinsky, W.: Complete writings on art. In: Lindsay, K.C., Vergo, P. (eds.) Da Capo Press (1994)

    Google Scholar 

  21. Kubota, A., et al.: A new kind of aesthetics-the mathematical structure of the aesthetic. Philosophies 2, 1–14 (2017)

    Article  Google Scholar 

  22. Lurie, J.: Higher Topos Theory. Academic Search Complete. Princeton University Press (2009)

    Google Scholar 

  23. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-4721-8

    Book  Google Scholar 

  24. Mannone, M.: Introduction to gestural similarity in music. An application of category theory to the orchestra. J. Math. Music 12, 63–87 (2018)

    Article  Google Scholar 

  25. Mannone, M.: Knots, music and DNA. J. Creat. Music Syst. 2(2), 1–22 (2018). https://www.jcms.org.uk/article/id/523/

  26. Mannone, M., Distefano, V., Santini, G.: Classes of Colors and Timbres: A Clustering Approach. Under review

    Google Scholar 

  27. Mannone, M., Santini, G., Adedoyin, E., Cella, C.E.: Color and timbre gestures: an approach with bicategories and bigroupoids. Mathematics 10(4), 663 (2022).https://doi.org/10.3390/math10040663

  28. Mannone, M., Turchet, L.: Shall we (math and) dance? In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 84–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_7

    Chapter  Google Scholar 

  29. Mannone, M., Favali, F., Di Donato, B., Turchet, L.: Quantum GestART: identifying and applying correlations between mathematics, art, and perceptual organization. J. Math. Music 15(1), 62–94 (2021)

    Article  Google Scholar 

  30. Mazzola, G., et al.: The Topos of Music. Birkhäuser (2002)

    Google Scholar 

  31. Mazzola, G., Andreatta, M.: Diagrams, gestures and formulae in music. J. Math. Music 1, 23–46 (2007)

    Article  Google Scholar 

  32. Newton, I.: Opticks, or, A Treatise of the Reflections, Refractions, Inflections and Colours of Light. S. Smith and B. Walford, London (1704). https://www.loc.gov/resource/rbctos.2017gen39060/?st=gallery

  33. Palmer, S., Schloss, K., Xu, Z., Prado-Leon, L.: Music-color associations are mediated by emotion. Proc. Natl. Acad. Sci. 110(22): 8836–8841 (2013). https://www.pnas.org/doi/10.1073/pnas.1212562110

  34. Provenzi, E.: Geometry of color perception. Part 1: structures and metrics of a homogeneous color space. J. Math. Neurosci. 10, 1–19 (2020). https://mathematical-neuroscience.springeropen.com/articles/10.1186/s13408-020-00084-x

  35. Resnikoff, H.: On the psychophysical function. J. Math. Biol. 2, 265–276 (1975)

    Article  Google Scholar 

  36. Rosenblum, L., Dias, J., Dorsi, J.: The supramodal brain: implications for auditory perception. J. Cogn. Psychol. 1, 65–87 (2016)

    Google Scholar 

  37. Sethares, W.: Tuning, Timbre, Spectrum. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Mannone .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure Statement

No potential conflict of interest was reported by the authors.

Author Contributions

The authors have contributed equally.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mannone, M., Arias-Valero, J.S. (2022). Some Mathematical and Computational Relations Between Timbre and Color. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics