Abstract
In this paper we propose a new fitness function for Evolutionary Computation purposes, based on a weighted by neighborhood average distance between two sequences of points within any metric space. We will apply this fitness function to the field of Computer-Assisted Composition focusing on the problem of thematic bridging, consisting in the evolutionary creation of a soft set of transitions between two given different melodies, the initial and the final one. Several self-adaptive strategies will be used to perform the search. A symbolic melody will be genotypically mapped into a sequence of genes, each of then containing the information of duration, frequency and time distance to following note. We will test the implementation of the fitness function by means of two experiments, showing some of the intermediate melodies generated in a successful run, and benchmarking every experiment with performance indicators for any of the three distinct evolutionary strategies implemented. The results prove this novel fitness function to be a quick and suitable way for individual evaluation in genetic algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lemos Almada, C.: Genetic algorithms based on the principles of Grundgestalt and developing variation. In: Collins, T., Meredith, D., Volk, A. (eds.) Mathematics and Computation in Music, MCM 2015. LNCS (LNAI), vol. 9110, pp. 42–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20603-5_4
Arutyunov, V., Averkinb, A.: Genetic algorithms for music variation on genom platform. In: 9th International Conference on Theory and Application of Soft Computing, Computing with Words and Perception, ICSCCW 2017, pp. 317–324 (2017)
Biles, J.A.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of the 1994 International Computer Music Conference, pp. 131–137. International Computer Music Association, Copenhagen (1994)
de la Puente, A., Alfonso, R., Moreno, M.: Automatic composition of music by means of grammatical evolution. In: Proceedings of the 2002 Conference on APL: Array Processing Languages, pp. 148–155. Association for Computer Machinery, Madrid (2002)
Donnelly, P., Sheppard, J.: Evolving four-part harmony using genetic algorithms. In: Di Chio, C., et al. (eds.) Applications of Evolutionary Computation, EvoApplications 2011. LNCS, vol. 6625, pp. 273–282. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_28
Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8
Hartmann, P.: Selection of musical identities. In: Proceedings of the 1990 International Computer Music Conference, pp. 234–236. International Computer Music Association, Glasgow (1990)
Horner, A., Goldberg, D.: Genetic algorithms and computer-assisted music composition. In: Proceedings of the 1991 International Computer Music Conference, Montreal, Canada, vol. 51, pp. 479–482 (1991)
Horner, A., Ayers, L.: Harmonization of musical progressions with genetic algorithms. In: Proceedings of the 1995 International Computer Music Conference, pp. 483–484. International Computer Music Association, Banff (1995)
Martínez, B., Liern, V.: A fuzzy-clustering based approach for measuring similarity between melodies. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) Mathematics and Computation in Music, MCM 2017. LNCS (LNAI), vol. 10527, pp. 279–290. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71827-9_21
Martínez-Rodríguez, B., Liern, V.: Mercury: a software based on fuzzy clustering for computer-assisted composition. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O. (eds.) Mathematics and Computation in Music, MCM 2019. Lecture Notes in Computer Science, vol. 11502, pp. 236–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_19
Miranda, E., Al Biles, J.: Evolutionary Computer Music. Springer, London (2007). https://doi.org/10.1007/978-1-84628-600-1
McIntyre, R.: Bach in a box: the evolution of four part baroque harmony using the genetic algorithm. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 852–857. IEEE, Orlando (1994)
Nam, Y.-W., Kim, Y.-H.: Automatic jazz melody composition through a learning-based genetic algorithm. In: Ekárt, A., Liapis, A., Castro Pena, M.L. (eds.) Computational Intelligence in Music, Sound, Art and Design, EvoMUSART 2019. LNCS, vol. 11453, pp. 217–233. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16667-0_15
Sánchez, C., Moreno, F., Albarracín, D., Fernández, J., Vico, F.: Melomics: a case-study of AI in Spain. AI Mag. 34(3), 99–103 (2013)
de León, P., Rizo, D., Ramirez, R and Iñesta, J.: Melody characterization by a genetic fuzzy system. In: Proceedings of the 5th Sound and Music Computing Conference. Sound and Music Computing Association, Berlin (2008)
Romero, J.J.: A Handbook on Evolutionary Art and Music. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72877-1
Scirea, M., Togelius, J., Eklund, P., Risi, S.: MetaCompose: a compositional evolutionary music composer. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds.) Evolutionary and Biologically Inspired Music, Sound, Art and Design, EvoMUSART 2016. Lecture Notes in Computer Science, vol. 9596, pp. 202–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31008-4_14
Tzimeas, D., Mangina, E.: A GA tool for computer assisted music composition. In: Proceedings of 2007 International Computer Music Conference. International Computer Music Association, Copenhagen (2007)
Trump, S.: Sound cells in genetic improvisation: an evolutionary model for improvised music. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds.) Artificial Intelligence in Music, Sound, Art and Design, EvoMUSART 2020. Lecture Notes in Computer Science, vol. 12103, pp. 179–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43859-3_13
Weinberg, G., Godfrey, M., Rae, A., Rhoads, J.: A real-time genetic algorithm in human-robot musical improvisation. In: Kronland-Martinet, R., Ystad, S., Jensen, K. (eds.) Computer Music Modeling and Retrieval. Sense of Sounds, CMMR 2007. Lecture Notes in Computer Science, vol. 4969, pp. 351–359 . Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-85035-9_24
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Martínez-Rodríguez, B. (2022). A New Fitness Function for Evolutionary Music Composition. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-07015-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07014-3
Online ISBN: 978-3-031-07015-0
eBook Packages: Computer ScienceComputer Science (R0)