Abstract
Mathematical Morphology provides powerful tools for image processing, analysis and understanding. In this paper, we apply these tools to analyze scores, that are image-like representations of Music. To do that, we consider chroma rolls, a representation of scores similar to piano rolls that use chromas instead of pitches. Endowing this representation with a lattice structure, one can define Mathematical Morphology operators, and setting a group structure to the Time-Frequency plane allows us to use the notion of structuring element. We show throughout some examples that this relates with the notion of pitch-class set and chord progressions, and we analyze two Chopin’s Nocturnes with this technique.
This research is supported by European Research Council ERC-ADG-883313 REACH, and Agence Nationale de la Recherche ANR-19-CE33-0010 MERCI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
\(\psi :L_1 \rightarrow L_2\) is said to be increasing if \(\forall X, Y \in L_1\), \(X \le _1 Y \Rightarrow \psi (X) \le _2 \psi (Y)\).
- 3.
\(\forall X \in L\), \(\psi (X) \le X\).
- 4.
\(\psi ^2 = \psi \).
- 5.
\(\forall X \in L\), \(X \le \psi (X)\).
- 6.
The stabilizer of a subset \(A \subseteq \mathbb {Z}_{12}\) is defined by \(\text {Stab}(A) = \{ n \in \mathbb {Z}_{12} : T_{n}A = A\}\) and is a subgroup of \(\mathbb {Z}_{12}\).
- 7.
This number comes from the number of subsets of \(\mathbb {Z}_{12}\) that is equal to \(2^{12}\).
References
Bilmes, J.A.: Timing is of the essence: perceptual and computational techniques for representing, learning, and reproducing expressive timing in percussive rhythm. Ph.D. Thesis, Massachusetts Institute of Technology (1993)
Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology I. Dilations and erosions. Comput. Vis. Graph. Image Process. 50(3), 245–295 (1990)
Karvonen, M.: Using Mathematical Morphology for Geometric Music Retrieval. Ph.D. Thesis, University of Helsinky (2008)
Karvonen, M., Laitinen, M., Lemström, K., Vikman, J.: Error-tolerant content-based music-retrieval with mathematical morphology. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds.) Exploring Music Contents, CMMR 2010. LNCS, vol. 6684, pp. 321–337. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23126-1_20
Lascabettes, P., Bloch, I., Agon, C.: Analyse de représentations spatiales de la musique par des opérateurs simples de morphologie mathématique. In: Journées d’Informatique Musicale. Strasbourg, France (2020)
Matheron, G.: Random Sets and Integral Geometry. Wiley, New-York (1975)
Romero-García, G.: Rhythm Transcription and Characterization for Performed Music and Arrhythmia Sequences. Master’s Thesis, Sorbonne Université, Paris (2020)
Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology: II. Openings and closings. CVGIP: Image Underst. 54(1), 74–97 (1991)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New-York (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Romero-García, G., Bloch, I., Agón, C. (2022). Mathematical Morphology Operators for Harmonic Analysis. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-07015-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07014-3
Online ISBN: 978-3-031-07015-0
eBook Packages: Computer ScienceComputer Science (R0)